The network of brain areas aphasic patients recruit for language functions is largely consistent across studies. Several recruitment mechanisms occur, including persistent function in spared nodes, compensatory recruitment of alternate nodes, and recruitment of areas that may hinder recovery. These findings may guide development of brain stimulation protocols that can be applied across populations of aphasic patients who share common attributes.
Although evidence suggests that patients with left hemisphere strokes and nonfluent aphasia who receive 1 Hz repetitive transcranial magnetic stimulation (rTMS) over the intact right inferior frontal gyrus experience persistent benefits in naming, it remains unclear whether the effects of rTMS in these patients generalize to other language abilities. We report a subject with chronic nonfluent aphasia who showed stable deficits of elicited propositional speech over the course of five years, and received 1200 pulses of 1 Hz rTMS daily for 10 days at a site identified as being optimally responsive to rTMS in this patient. Consistent with prior studies there was improvement in object naming, with a statistically significant improvement in action naming. Improvement was also demonstrated in picture description at 2, 6, and 10 months after rTMS with respect to the number of narrative words and nouns, sentence length, and use of closed class words. Compared to his baseline performance, the patient showed significant improvement on the Western Aphasia Battery subscale for spontaneous speech. These findings suggest that manipulation of the intact contralesional cortex in patients with nonfluent aphasia may result in language benefits that generalize beyond naming to include other aspects of language production.
Neurologists and aphasiologists have debated for over a century whether right hemisphere recruitment facilitates or impedes recovery from aphasia. Here we present a well-characterized patient with sequential left and right hemisphere strokes whose case substantially informs this debate. A 72-year-old woman with chronic nonfluent aphasia was enrolled in a trial of transcranial magnetic stimulation (TMS). She underwent 10 daily sessions of inhibitory TMS to the right pars triangularis. Brain activity was measured during picture naming using fMRI prior to TMS exposure and before and after TMS on the first day of treatment. Language and cognition were tested behaviorally three times prior to treatment, and at 2 and 6 months afterwards. Inhibitory TMS to the right pars triangularis induced immediate improvement in naming, which was sustained 2 months later. FMRI confirmed a local reduction in activity at the TMS target, without expected increased activity in corresponding left hemisphere areas. Three months after TMS, the patient suffered a right hemisphere ischemic stroke, resulting in worsening of aphasia without other clinical deficits. Behavioral testing 3 months later confirmed that language function was impacted more than other cognitive domains. The paradoxical effects of inhibitory TMS and the stroke to the right hemisphere demonstrate that even within a single patient, involvement of some right hemisphere areas may support recovery, while others interfere. The behavioral evidence confirms that compensatory reorganization occurred within the right hemisphere after the original stroke. No support is found for interhemispheric inhibition, the theoretical framework on which most therapeutic brain stimulation protocols for aphasia are based.
While evidence suggests that transcranial direct current stimulation (tDCS) may facilitate language recovery in chronic post-stroke aphasia, individual variability in patient response to different patterns of stimulation remains largely unexplored. We sought to characterize this variability among chronic aphasic individuals, and to explore whether repeated stimulation with an individualized optimal montage could lead to persistent reduction of aphasia severity. In a two-phase study, we first stimulated patients with four active montages (left hemispheric anode or cathode; right hemispheric anode or cathode) and one sham montage (Phase 1). We examined changes in picture naming ability to address (1) variability in response to different montages among our patients, and (2) whether individual patients responded optimally to at least one montage. During Phase 2, subjects who responded in Phase 1 were randomized to receive either real-tDCS or to receive sham stimulation (10 days); patients who were randomized to receive sham stimulation first were then crossed over to receive real-tDCS (10 days). In both phases, 2 mA tDCS was administered for 20 min per real-tDCS sessions and patients performed a picture naming task during stimulation. Patients' language ability was re-tested after 2-weeks and 2-months following real and sham tDCS in Phase 2. In Phase 1, despite considerable individual variability, the greatest average improvement was observed after left-cathodal stimulation. Seven out of 12 subjects responded optimally to at least one montage as demonstrated by transient improvement in picture-naming. In Phase 2, aphasia severity improved at 2-weeks and 2-months following real-tDCS but not sham. Despite individual variability with respect to optimal tDCS approach, certain montages result in consistent transient improvement in persons with chronic post-stroke aphasia. This preliminary study supports the notion that individualized tDCS treatment may enhance aphasia recovery in a persistent manner.
Background Loss of fluency is a significant source of functional impairment in many individuals with aphasia. Repetitive transcranial magnetic stimulation (rTMS) administered to the right inferior frontal gyrus (IFG) has been shown to facilitate naming in persons with chronic left hemisphere stroke and non-fluent aphasia. However, changes in fluency in aphasic subjects receiving rTMS have not been adequately explored. Aims To determine whether rTMS improves fluency in individuals with chronic nonfluent aphasia, and to identify aspects of fluency that are modulated in persons who respond to rTMS. Methods & Procedures Ten individuals with left hemisphere MCA strokes and mild to moderate non-fluent aphasia participated in the study. Before treatment, subjects were asked to describe the Cookie Theft picture in three separate sessions. During treatment, all subjects received 1200 pulses of 1 Hz rTMS daily in 10 sessions over two weeks at a site that had previously been shown to improve naming. Subjects repeated the Cookie Theft description two months after treatment. Five subjects initially received sham stimulation instead of real TMS. Two months after sham treatment, these individuals received real rTMS. Performance both at baseline and after stimulation was coded using Quantitative Production Analysis (Saffran, Berndt & Schwartz, 1989) and Correct Information Unit (Nicholas & Brookshire, 1993) analysis. Outcomes & Results Across all subjects (n=10), real rTMS treatment resulted in a significant increase in multiple measures of discourse productivity compared to baseline performance. There was no significant increase in measures of sentence productivity or grammatical accuracy. There was no significant increase from baseline in the sham condition (n=5) on any study measures. Conclusions Stimulation of the right IFG in patients with chronic non-fluent aphasia facilitates discourse production. We posit that this effect may be attributable to improved lexical-semantic access.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.