BackgroundIn addition to farming exposures in childhood, maternal farming exposures provide strong protection against allergic disease in their children; however, the effect of farming lifestyle on human milk (HM) composition is unknown.ObjectiveThis study aims to characterize the maternal immune effects of Old Order Mennonite (OOM) traditional farming lifestyle when compared with Rochester (ROC) families at higher risk for asthma and allergic diseases using HM as a proxy.MethodsHM samples collected at median 2 months of lactation from 52 OOM and 29 ROC mothers were assayed for IgA1 and IgA2 antibodies, cytokines, endotoxin, HM oligosaccharides (HMOs), and targeted fatty acid (FA) metabolites. Development of early childhood atopic diseases in children by 3 years of age was assessed. In addition to group comparisons, systems level network analysis was performed to identify communities of multiple HM factors in ROC and OOM lifestyle.ResultsHM contains IgA1 and IgA2 antibodies broadly recognizing food, inhalant, and bacterial antigens. OOM HM has significantly higher levels of IgA to peanut, ovalbumin, dust mites, and Streptococcus equii as well TGF-β2, and IFN-λ3. A strong correlation occurred between maternal antibiotic use and levels of several HMOs. Path-based analysis of HMOs shows lower activity in the path involving lactoneohexaose (LNH) in the OOM as well as higher levels of lacto-N-neotetraose (LNnT) and two long-chain FAs C-18OH (stearic acid) and C-23OH (tricosanoic acid) compared with Rochester HM. OOM and Rochester milk formed five different clusters, e.g., butyrate production was associated with Prevotellaceae, Veillonellaceae, and Micrococcaceae cluster. Development of atopic disease in early childhood was more common in Rochester and associated with lower levels of total IgA, IgA2 to dust mite, as well as of TSLP.ConclusionTraditional, agrarian lifestyle, and antibiotic use are strong regulators of maternally derived immune and metabolic factors, which may have downstream implications for postnatal developmental programming of infant’s gut microbiome and immune system.
Traditional farming lifestyle has been shown to be protective against asthma and allergic diseases. The individual factors that appear to be associated with this “farm-life effect” include consumption of unpasteurized farm milk and exposure to farm animals and stables. However, the biomarkers of the protective immunity and those associated with early development of allergic diseases in infancy remain unclear. The “Zooming in to Old Order Mennonites (ZOOM)” study was designed to assess the differences in the lifestyle and the development of the microbiome, systemic and mucosal immunity between infants born to traditional farming lifestyle at low risk for allergic diseases and those born to urban/suburban atopic families with a high risk for allergic diseases in order to identify biomarkers of development of allergic diseases in infancy. 190 mothers and their infants born to Old Order Mennonite population protected from or in Rochester families at high risk for allergic diseases were recruited before birth from the Finger Lakes Region of New York State. Questionnaires and samples are collected from mothers during pregnancy and after delivery and from infants at birth and at 1–2 weeks, 6 weeks, 6, 12, 18, and 24 months, with 3-, 4-, and 5-year follow-up ongoing. Samples collected include maternal blood, stool, saliva, nasal and skin swabs and urine during pregnancy; breast milk postnatally; infant blood, stool, saliva, nasal and skin swabs. Signs and symptoms of allergic diseases are assessed at every visit and serum specific IgE is measured at 1 and 2 years of age. Allergic diseases are diagnosed by clinical history, exam, and sensitization by skin prick test and/or serum specific IgE. By the end of the first year of life, the prevalence of food allergy and atopic dermatitis were higher in ROC infants compared to the rates observed in OOM infants as was the number of infants sensitized to foods. These studies of immune system development in a population protected from and in those at risk for allergic diseases will provide critical new knowledge about the development of the mucosal and systemic immunity and lay the groundwork for future studies of prevention of allergic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.