Histone deacetylases (HDACs) form a family of enzymes, which have fundamental roles in the epigenetic regulation of gene expression and contribute to the growth, differentiation, and apoptosis of cancer cells. In this study, we further investigated the biological function of HDAC5 in cancer cells. We found HDAC5 is associated with actively replicating pericentric heterochromatin during late S phase. We demonstrated that specific depletion of HDAC5 by RNA interference resulted in profound changes in the heterochromatin structure and slowed down ongoing replication forks. This defect in heterochromatin maintenance and assembly are sensed by DNA damage checkpoint pathways, which triggered cancer cells to autophagy and apoptosis, and arrested their growth both in vitro and in vivo. Finally, we also demonstrated that HDAC5 depletion led to enhanced sensitivity of DNA to DNAdamaging agents, suggesting that heterochromatin de-condensation induced by histone HDAC5 silencing may enhance the efficacy of cytotoxic agents that act by targeting DNA in vitro. Together, these results highlighted for the first time an unrecognized link between HDAC5 and the maintenance/assembly of heterochromatin structure, and demonstrated that its specific inhibition might contribute to increase the efficacy of DNA alteration-based cancer therapies in clinic.
HighlightHigh expression of the FRD3 gene in the metal hyperaccumulator Arabidopsis halleri stems from complex zinc-regulated transcriptional and post-transcriptional mechanisms present in the non-hyperaccumulating Arabidopsis thaliana.
The US FDA approval of broad-spectrum histone deacetylase (HDAC) inhibitors has firmly laid the cancer community to explore HDAC inhibition as a therapeutic approach for cancer treatment. Hitting one HDAC member could yield clinical benefit but this required a complete understanding of the functions of the different HDAC members. Here we explored the consequences of specific HDAC5 inhibition in cancer cells. We demonstrated that HDAC5 inhibition induces an iron-dependent reactive oxygen species (ROS) production, ultimately leading to apoptotic cell death as well as mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). Interestingly, adaptation of HDAC5-depleted cells to oxidative stress passes through reprogramming of metabolic pathways towards glucose and glutamine. Therefore, interference with both glucose and glutamine supply in HDAC5-inhibited cancer cells significantly increases apoptotic cell death and reduces tumour growth in vivo; providing insight into a valuable clinical strategy combining the selective inhibition of HDAC5 with various inhibitors of metabolism as a new therapy to kill cancer cells.
Telomeres are major regulators of genome stability and cell proliferation. A detailed understanding of the mechanisms involved in their maintenance is of foremost importance. Of those, telomere chromatin remodeling is probably the least studied; thus, we intended to explore the role of a specific histone deacetylase on telomere maintenance. We uncovered a new role for histone deacetylase 5 (HDAC5) in telomere biology. We report that HDAC5 is recruited to the long telomeres of osteosarcoma- and fibrosarcoma-derived cell lines, where it ensures proper maintenance of these repetitive regions. Indeed, depletion of HDAC5 by RNAi resulted in the shortening of longer telomeres and homogenization of telomere length in cells that use either telomerase or an alternative mechanism of telomere maintenance. Furthermore, we present evidence for the activation of telomere recombination on depletion of HDAC5 in fibrosarcoma telomerase-positive cancer cells. Of potential importance, we also found that depletion of HDAC5 sensitizes cancer cells with long telomeres to chemotherapeutic drugs. Cells with shorter telomeres were used to control the specificity of HDAC5 role in the maintenance of long telomeres. HDAC5 is essential for the length maintenance of long telomeres and its depletion is required for sensitization of cancer cells with long telomeres to chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.