BACKGROUND: The human kallikrein-related peptidase family consists of 15 genes. Twelve of these genes are overexpressed in ovarian cancer and may represent potential markers for diagnosis, prognosis, and/or response to treatment. The aim of this study was to determine the prognostic significance of kallikrein-related peptidase 6 (KLK6) and kallikrein-related peptidase 13 (KLK13) in epithelial ovarian cancer by quantifying gene expression levels with tumour pathology and patient survival data. METHODS: Total RNA was isolated from 106 patients diagnosed with primary ovarian cancer, as well as 8 normal ovary controls. Samples were analysed by quantitative real-time PCR for KLK6 and KLK13 expression. Correlation between kallikrein gene expression and clinical characteristics was evaluated with the w 2 -test. Survival analysis was performed using Kaplan -Meier and Cox proportional hazards regression models. RESULTS: Expression levels of both KLK6 and KLK13 mRNA were significantly increased in invasive cancers relative to normal ovaries (P ¼ 0.002 and 0.039 respectively). High KLK6 and KLK13 expression was an indicator of poor prognosis, with patients having a shorter recurrence-free survival (P ¼ 0.002 and 0.027 respectively). High KLK6 expression was also significantly associated with lower overall survival (P ¼ 0.011). When subjected to multivariate analysis, patients with either high KLK6 or KLK13 were 3-and 2.2-fold, respectively, more likely to have a recurrence than patients with low kallikrein expression. CONCLUSION: These data show increased mRNA expression of KLK6 and KLK13 in ovarian cancer compared to normal ovarian tissues. High KLK6 or KLK13 expression in primary ovarian tumours can significantly predict prognosis in terms of recurrence-free survival and overall survival. In all, this study shows KLK6 and KLK13 as potential biomarkers and may be therapeutic targets for treatment of ovarian cancer.
The human papillomavirus (HPV) is the etiologic agent of cervical cancer. In this study, we provide evidence for the human Pygopus (hPygo)2 gene as a cellular biomarker for HPV-related disease. In a tumor microarray of cervical cancer progression, hPygo2 levels were greater in high-grade lesions and squamous cell carcinomas than in normal epithelia. Similarly, hPygo2 mRNA and protein levels were greater in HPV-positive cervical cancer cells relative to uninfected primary cells. RNA interference (RNAi)-mediated depletion of HPV-E7 increased whereas E74-like factor (Elf)-1 RNAi decreased association of Retinoblastoma (Rb) tumor suppressor with the hPygo2 promoter in cervical cancer cell lines. Transfection of dominant-active Rb inhibited Elf-1-dependent activation of hPygo2, whereas Elf-1 itself increased hPygo2 expression. Chromatin immunoprecipitation assays showed that Rb repressed hPygo2 by inhibiting Elf-1 at the Ets-binding site in the hPygo2 promoter. These results suggested that abrogation of Rb by E7 resulted in derepression of Elf-1, which in turn stimulated expression of hPygo2.
Mitotic segregation of chromosomes requires precise coordination of many factors, yet evidence is lacking as to how genes encoding these elements are transcriptionally controlled. Here, we found that the Pygopus (Pygo)2 chromatin effector is indispensable for expression of the MYC-dependent genes that regulate cancer cell division. Depletion of Pygo2 arrested SKOV-3 cells at metaphase, which resulted from the failure of chromosomes to capture spindle microtubules, a critical step for chromosomal biorientation and segregation. This observation was consistent with global chromatin association findings in HeLa S3 cells, revealing the enrichment of Pygo2 and MYC at promoters of biorientation and segmentation genes, at which Pygo2 maintained histone H3K27 acetylation. Immunoprecipitation and proximity ligation assays demonstrated MYC and Pygo2 interacting in nuclei, corroborated in a heterologous MYC-driven prostate cancer model that was distinct from Wnt/β-catenin signaling. Our evidence supports a role for Pygo2 as an essential component of MYC oncogenic activity required for mitosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.