A novel selective androgen receptor modulator scaffold has been discovered through structural modifications of hydantoin antiandrogens. Several 4-(4-hydroxyphenyl)-N-arylhydantoins displayed partial agonism with nanomolar in vitro potency in transactivation experiments using androgen receptor (AR) transfected cells. In a standard castrated male rat model, several compounds showed good anabolic activity on levator ani muscle, dissociated from the androgenic activity on ventral prostate, after oral dosing at 30 mg/kg. (+)-4-[3,4-Dimethyl-2,5-dioxo-4-(4-hydroxyphenyl)imidazolidin-1-yl]-2-(trifluoromethyl)benzonitrile ((+)-11b) displayed anabolic potency with a strong dissociation between levator ani muscle and ventral prostate (A(50) = 0.5 mg/kg vs 70 mg/kg). The binding modes of two compounds, including (+)-11b, within the AR ligand-binding domain have been studied by cocrystallization experiments using a coactivator-like peptide. Both compounds bound to the same site, and the overall structures of the AR were very similar.
Structural modification performed on a 4-methyl-4-(4-hydroxyphenyl)hydantoin series is described which resulted in the development of a new series of 4-(hydroxymethyl)diarylhydantoin analogues as potent, partial agonists of the human androgen receptor. This led to the identification of (S)-(-)-4-(4-(hydroxymethyl)-3-methyl-2,5-dioxo-4-phenylimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile ((S)-(-)-18a, GLPG0492) evaluated in vivo in a classical model of orchidectomized rat. In this model, (-)-18a exhibited anabolic activity on muscle, strongly dissociated from the androgenic activity on prostate after oral dosing. (-)-18a has very good pharmacokinetic properties, including bioavailability in rat (F > 50%), and is currently under evaluation in phase I clinical trials.
To localize regions conferring ligand binding specificity of the human glucocorticoid (hGR) and progesterone (hPR) receptors, we constructed chimeras comprising the DNA-binding domain of the yeast transcription factor GAL4, linked to the ligand binding domain of hGR or hPR. Replacement of a sequence of hGR encompassing helices H6 and H7 with the homologous sequence from hPR creates a chimeric protein GP3, which binds the progestin RU 27987 with high affinity, and results in a concomitant loss of glucocorticoid binding [dexamethasone (DEX), RU 43044]. Moreover, GP3 is not able to mediate RU 27987-induced transactivation. A detailed mutational analysis of this sequence and the study of the recently solved hPR crystal structure revealed five residues that confer progestin responsiveness to GR or modulate ligand binding and transcriptional activation. Notably, the simultaneous presence of residues Ser637 and Phe639 on GP3, lining the ligand binding pocket, is specifically involved in RU 27987 binding. The absence of residues Asp641, Gln642, and Leu647 on GP3 is accountable for the lack of glucocorticoids binding on GP3. Unlike residue 642, residues 641 and 647 are not in direct contact with the ligand and most likely act through steric-mediated interactions. The presence of Gln642 and Leu647 are determinant for transcriptional activation in response to DEX and RU 27987, respectively. DEX-dependent transactivation is further enhanced by the presence of Leu647.
The ligand-binding domain of the human androgen receptor has been cloned, overproduced and crystallized in the presence of a coactivator-like 11-mer peptide and two different nonsteroidal ligands. The crystals of the two ternary complexes were isomorphous and belonged to space group P2 1 2 1 2 1 , with one molecule in the asymmetric unit. They diffracted to 1.7 and 1.95 Å resolution, respectively. Structure determination of these two complexes will help in understanding the mode of binding of selective nonsteroidal androgens versus endogenous steroidal ligands and possibly the origin of their tissue selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.