A well-established knowledge of nuclear phenomena including fission, reaction cross sections, and structure/decay properties is critical for applications ranging from the design of new reactors to nonproliferation to the production of radioisotopes for the diagnosis and treatment of illness. However, the lack of a well-quantified, predictive theoretical capability means that most nuclear observables must be measured directly and used to calibrate empirical models, which in turn provide the data needed for these applications. In many cases, either there is a lack of data needed to guide the models or the results of the different measurements are discrepant, leading to the development of evaluation methodologies to provide recommended values and uncertainties. In this review, we describe the nuclear data evaluation process and the international community that carries it out. We then discuss new measurements and improved theory and/or modeling needed to address future challenges in applied nuclear science.
Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 × 15 design with an initial enrichment of 4.013 wt % 235 U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via high performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. The recent measurements performed by ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. These measurements serve to improve confidence in the data, to verify reported uncertainties, and to investigate previous anomalies noted in the plutonium measurements. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.
A new method of measuring fission fragment mass and energy distributions as a function of incident neutron energy in the range from below 0.1 eV to 1 keV has been developed. The method involves placing a double-sided Frisch-gridded fission chamber in Rensselaer Polytechnic Institute's lead slowing-down spectrometer (LSDS). The high neutron flux of the LSDS allows for the measurement of the energy-dependent, neutron-induced fission cross sections simultaneously with the mass and kinetic energy of the fission fragments of various small samples. The samples may be isotopes that are not available in large quantities (submicrograms) or with small fission cross sections (microbarns). The fission chamber consists of two anodes shielded by Frisch grids on either side of a single cathode. The sample is located in the center of the cathode and is made by depositing small amounts of actinides on very thin films. The chamber was successfully tested and calibrated using 0.41 ± 0.04 ng of 252 Cf and the resulting mass distributions were compared to those of previous work. As a proof of concept, the chamber was placed in the LSDS to measure the neutron-induced fission cross section and fragment mass and energy distributions of 25.3 ± 0.5 µg of 235 U. Changes in the mass distributions as a function of incident neutron energy are evident and are examined using the multimodal fission mode model.
Lastly, the organizers want to offer a special word of thanks to our tireless session leaders who worked hard to prepare for, run and write-up the breakout sessions. We deeply appreciate their commitment to their programs and applied nuclear science as a whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.