The effect of zeolite amendment for enhanced sorption capacity on the consolidation behavior and hydraulic conductivity, k, of a representative soil-bentonite (SB) backfill for vertical cutoff walls was evaluated via laboratory testing. The consolidation behavior and k of test specimens containing fine sand, 5.8% (dry weight) sodium bentonite, and 0, 2, 5, or 10% (dry weight) of one of three types of zeolite (clinoptilolite, chabazite-lower bed, or chabazite-upper bed) were measured using fixed-ring oedometers, and k also was measured on separate specimens using a flexible-wall permeameter. The results indicated that addition of a zeolite had little impact on either the consolidation behavior or the k of the backfill, regardless of the amount or type of zeolite. For example, the compression index, C c , for the unamended backfill specimen was 0.24, whereas values of C c for the zeolite-amended specimens were in the range 0:19 ≤ C c ≤ 0:23. Similarly, the k for the unamended specimen based on flexible-wall tests was 2:4 × 10 À10 m=s, whereas values of k for zeolite-amended specimens were in the range 1:2 × 10 À10 ≤ k ≤ 3:9 × 10 À10 m=s. The results of the study suggest that enhancing the sorption capacity of typical SB backfills via zeolite amendment is not likely to have a significant effect on the consolidation behavior or k of the backfill, provided that the amount of zeolite added is small (≤ 10%).
The results of eight cumulative mass column tests were analyzed via several different methods to evaluate the dispersion coefficient, D, and the retardation factor, Rd, governing the migration of chloride (Cl−), potassium (K), and zinc (Zn) through soil–bentonite backfills for vertical cutoff walls. Regression of the measured relative (effluent) concentration (RC) breakthrough curves (BTCs) resulted in relatively accurate determinations of Rd, but relatively inaccurate determinations of D for all three solutes. Values of Rd based on dimensionless time, T, corresponding to an RC of 0.5 were underestimated for all three solutes due to the significance of diffusion on solute transport. With a few exceptions, Rd for K and Zn based on analyses of the steady-state portions of measured cumulative mass ratio (CMR) BTCs and T – CMR BTCs were relatively accurate, whereas analysis of measured T – CMR BTCs was more accurate for determining Rd of Cl−. Overall, there is no advantage to analyzing the results of cumulative mass column tests in the form of RC BTCs, whereas the CMR and T – CMR BTCs offer the advantage of determining Rd based on simple linear regressions of the steady-state portions of the BTCs, i.e., provided steady-state solute transport has been established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.