To investigate the neuroanatomical and functional brain changes in migraine patients relative to healthy controls, we used a combined analytical approach including voxel- and surface-based morphometry along with resting-state functional connectivity to determine whether areas showing structural alterations in patients also showed abnormal functional connectivity. Additionally, we wanted to assess whether these structural and functional changes were associated with group differences in pain catastrophizing and migraine-related disease variables in patients. We acquired T1-weighted anatomical and functional magnetic resonance imaging scans during rest in human subjects with a diagnosis of migraine and healthy controls. Structural analyses revealed greater left hippocampal gray matter volume and reduced cortical thickness in the left anterior midcingulate in patients compared with controls. We also observed negative associations between pain catastrophizing and migraine disease variables and gray matter in areas implicated in processing the sensory, affective, and cognitive aspects of pain in patients. Functional connectivity analyses showed that migraine patients displayed disrupted connectivity between default mode, salience, cognitive, visuospatial, and sensorimotor networks, which was associated with group differences in pain catastrophizing and migraine-related disease variables in patients. Together, our findings show widespread morphological and functional brain abnormalities in migraineurs in affective, cognitive, visual, and pain-related brain areas, which are associated with increased pain catastrophizing, disease chronicity, and severity of symptoms, suggesting that these structural and functional changes may be a consequence of repeated, long-term nociceptive signaling leading to increased pain sensitivity, mood disturbances, and maladaptive coping strategies to deal with unrelenting pain.
Background: There is significant evidence for cognitive decline following deep brain stimulation (DBS). Current stimulation paradigms utilize gamma frequency stimulation for optimal motor benefits; however, little has been done to optimize stimulation parameters for cognition. Recent evidence implicates subthalamic nucleus (STN) theta oscillations in executive function, and theta oscillations are well-known to relate to episodic memory, suggesting that theta frequency stimulation could potentially improve cognition in Parkinson's disease (PD). Objective: To evaluate the acute effects of theta frequency bilateral STN stimulation on executive function in PD versus gamma frequency and off, as well as investigate the differential effects on episodic versus nonepisodic verbal fluency. Methods: Twelve patients (all males, mean age 60.8) with bilateral STN DBS for PD underwent a doubleblinded, randomized cognitive testing during stimulation at (1) 130e135 Hz (gamma), (2) 10 Hz (theta) and (3) off. Executive functions and processing speed were evaluated using verbal fluency tasks (letter, episodic category, nonepisodic category, and category switching), color-word interference task, and random number generation task. Performance at each stimulation frequency was compared within subjects. Results: Theta frequency significantly improved episodic category fluency compared to gamma, but not compared to off. There were no significant differences between stimulation frequencies in other tests. Conclusion:In this pilot trial, our results corroborate the role of theta oscillations in episodic retrieval, although it is unclear whether this reflects direct modulation of the medial temporal lobe and whether similar effects can be found with more canonical memory paradigms. Further work is necessary to corroborate our findings and investigate the possibility of interleaving theta and gamma frequency stimulation for concomitant motor and cognitive effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.