The use of the miniature swine as a nonrodent species in research has continued to expand for over a decade, and they are becoming routinely used both in experimental pharmacology and as a therapeutic model for human diseases. Miniature swine models are regularly used for studies designed to assess efficacy and safety of new therapeutic compounds given through different routes of exposure and are used as an alternative model to rodents, canines, or nonhuman primates. Translational preclinical swine study data presented here support the current understanding that miniature swine are the animal model of choice for the assessment of drugs targeting endocrine, dermal, and ocular disorders. Because research investigators need to be familiar with some of the important features of the models developed in the miniature swine in order to place clinical and experimental findings in their proper perspective, relevant references and data from these models will be presented, compared, and partially illustrated.
Formulation of nonclinical evaluations is a challenge, with the fundamental need to achieve multiples of the clinical exposure complicated by differences in species and routes of administration-specific tolerances, depending on concentrations, volumes, dosing regimen, duration of each administration, and study duration. Current practice to approach these differences is based on individual experience and scattered literature with no comprehensive data source (the most notable exception being our 2006 publication on this same subject). Lack of formulation tolerance data results in excessive animal use, unplanned delays in the evaluation and development of drugs, and vehicle-dependent results. A consulting firm, a chemical company, and 4 contract research organizations conducted a rigorous data mining operation of vehicle data from studies dating from 1991 to 2015, enhancing the data from this author's 2006 publication (3 of the six 2015 contributors were also 2006 contributors). Additional data were found in the published literature. The results identified 108 single-component vehicles (and 305 combination formulations) used in more than 1,040 studies across multiple species (dog, primate, rat, mouse, rabbit, guinea pig, minipig, pig, chick embryo, and cat) by multiple routes for a wide range of study durations. The tabulated data include maximum tolerated use levels by species, route, duration of study, dose-limiting toxicity where reported, review of the available literature on each vehicle, guidance on syringe selection, volume and pH limits by route with basic guidance on nonclinical formulation development, and guidance on factors to be considered in nonclinical route selection.
The use of miniature swine as a non-rodent species in safety assessment has continued to expand for over a decade and their use has become routine, particularly in pharmacology as a model for human integumentary diseases. Translational preclinical swine study data are now favorably compared and contrasted to human data, and miniature swine models provide important information in dermal safety assessment and skin pharmacology. For example, the miniature swine model has been well-accepted for cutaneous absorption and toxicity studies due to swine integument being morphologically and functionally similar to human skin. Subsequently, this model is important to dermal drug development programs, and it is the animal model of choice for assessment of dermal absorption, local tolerance and systemic toxicity following dermal exposures. In conclusion, the miniature swine model has an important role to play in the safety assessment of pharmaceutical products and in multiple aspects of human dermal drug development.
A functional observational battery (FOB) is recommended as the first-tier neurotoxicity screening in the preclinical safety pharmacology testing guidelines. Minipigs have increasingly been used in regulatory toxicology studies; however, no current FOB protocol is available for neurotoxicity testing in these species. Hence, a minipig FOB instrument was developed. A complete crossover study with Sinclair minipigs was performed to evaluate physiologic, neurologic, and behavioral effects of amphetamine, ketamine, and diazepam. The treated minipigs were first observed in their home cage, were video-recorded for 10 minutes in an open field, and then went through a complete neurologic examination. Both ketamine and diazepam were shown to reduce the freezing and behavior shifts of treated minipigs, while increasing their exploratory behaviors. Both drugs also caused muscular and gait impairment. The effects of ketamine and diazepam were consistent with their roles as central nervous system (CNS) suppressants. Unique effects were also observed with ketamine and diazepam treatments, which may reflect their unique mechanisms of action. Consistent with its role as a CNS stimulant, amphetamine caused the treated minipigs to be hyperactive and to display increased freezing and behavior shifts and reduced exploring activities. These effects of amphetamine were opposite to those observed with ketamine and diazepam. Amphetamine also increased locomotion in the treated minipigs. The present effects of amphetamine, ketamine, and diazepam are in agreement with observations by others. In conclusion, the minipig is a suitable species for FOB evaluation of pharmaceuticals in preclinical safety pharmacology testing.
The use of miniature swine as a nonrodent species in safety assessment has continued to expand for over a decade, and they are becoming routinely used in toxicology and in pharmacology as well as a model for human diseases. Miniature swine models are regularly used for regulatory toxicity studies designed to assess safety of new therapeutic compounds given through different routes of exposure and are used as an alternative model to the canine or the nonhuman primate. Translational preclinical swine study data presented support the current finding that miniature swine are the animal model of choice for assessment of drug absorption, tolerance, and systemic toxicity following systemic exposures. Because research investigators need to be familiar with important anatomic and histopathologic features of the miniature swine in order to place toxicopathologic findings in their proper perspective, clinical and anatomic pathology data from a large number of Sinclair, Hanford, Yucatan, and Gö ttingen breeds from control groups from a wide variety of studies performed between 2004 and 2014 will be presented, compared, and partially illustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.