Besides digesting nutrients, the gut protects the host against invasion by pathogens. Enterocytes may be subjected to damage by both microbial and host defensive responses, causing their death. Here, we report a rapid epithelial response that alleviates infection stress and protects the enterocytes from the action of microbial virulence factors. Intestinal epithelia exposed to hemolysin, a pore-forming toxin secreted by Serratia marcescens, undergo an evolutionarily conserved process of thinning followed by the recovery of their initial thickness within a few hours. In response to hemolysin attack, Drosophila melanogaster enterocytes extrude most of their apical cytoplasm, including damaged organelles such as mitochondria, yet do not lyse. We identify two secreted peptides, the expression of which requires CyclinJ, that mediate the recovery phase in which enterocytes regain their original shape and volume. Epithelial thinning and recovery constitute a fast and efficient response to intestinal infections, with pore-forming toxins acting as alarm signals.
The cytoplasmic extrusion of enterocytes is a fast response to an exposure to pore-forming toxin (PFT)-producing bacteria whereby their apical cytoplasm is extruded into the intestinal lumen. As a result of this purge, the intestinal epithelium becomes thin prior to a subsequent recovery. We report here that the ingestion of ethanol or caffeine induces a similar response, which suggests that a common purging process is triggered by bacterial toxins and abiotic toxicants. We also delineate an additional mechanism that is initiated by these stimuli that we refer to as priming. The initial exposure of the intestinal epithelium to either PFT or xenobiotics protects enterocytes against a further round of purging upon a second bacterial infection. Priming prevents the epithelium from being persistently thin in the context of chronic intestinal infections. We have identified the upper part of the p38b MAPK pathway as well as the homeobox-containing transcription factors E5/EMS as being required for priming and not for the regrowth of enterocytes after the cytoplasmic purge. Unexpectedly, the priming process appears to function cell-nonautonomously. Our findings suggest that the cytoplasmic purge extrusion has been selected because it constitutes a fast reaction to accidental exposure to bacterial toxins or toxicants.
The intestinal tract is constantly exposed to microbes. Severe infections can arise following the ingestion of pathogenic microbes from contaminating food or water sources. The host directly fights off ingested pathogens with resistance mechanisms, the immune response, or withstands and repairs the damages inflicted either by virulence factors or the host immune effectors, through tolerance/resilience mechanisms. In a previous study, we reported the existence in Drosophila melanogaster of a novel evolutionarily conserved resilience mechanism to intestinal infections with a hemolysin-positive Serratia marcescens strain (SmDb11), the purge of the apical cytoplasm of enterocytes. The epithelium becomes very thin and recovers rapidly, regaining its normal thickness within several hours. Here, we found that this recovery of gut enterocyte morphology is based on the host internal reserves and not on ingested food. Indeed, we observed a retrograde transport of amino acids from the host hemolymph to the enterocytes. We have identified several amino acid transporters required for recovery and we focused on the SLC36 family transporter CG1139. CG1139 is required for the retrograde transport of amino acids. RNA sequencing revealed that genes involved in the positive regulation of growth were observed in wild-type but not CG1139 mutant guts, in which the expression of Myc and genes involved in Insulin signaling is down-regulated. Functional analysis revealed that Myc is also required for the recovery of the thick gut epithelium after infection. Altogether, our results show the importance of an amino acid transporter in the fast regrowth of the enterocytes upon infection. Unexpectedly, we found that this transporter acts non cell-autonomously and can regulate the transcription of other genes, suggesting a signaling function of CG1139 that therefore appears to act as a transceptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.