Transcriptional induction of genes is an essential part of the cellular response to interferons. To isolate yet unidentified IFN-regulated genes we have performed a differential screening on a cDNA library prepared from human lymphoblastoid Daudi cells treated for 16 h with human alpha/beta interferon (Hu-alpha/beta IFN). In the course of these studies we have isolated a human cDNA which codes for a protein sharing homology with the mouse Rpt-1 gene; it will be referred as Staf-50 for Stimulated Trans-Acting Factor of 50 kDa. Amino acid sequence analysis revealed that Staf-50 is a member of the Ring finger family and contains all the features of a transcriptional regulator able to initiate a second cascade of gene induction (secondary response). Staf-50 is induced by both type I and type II IFN in various cell lines and down-regulates the transcription directed by the long terminal repeat promoter region of human immunodeficiency virus type 1 in transfected cells. These data are consistent with a role of Staf-50 in the mechanism of transduction of the IFN antiviral action.
The interphase nucleus compartmentalizes its components to give rise to a highly organized and tightly controlled environment. Individual chromosomes occupy discrete areas, termed "chromosome territories," that are separated from each other by a channel called the "interchromosomal domain" (reviewed in Lamond and Earnshaw 1998). Actively transcribed genes tend to be at the periphery of chromosomal territories, whereas newly made RNA transcripts localize into the interchromosomal domain, where they can undergo further processing and transport. Movement within the nucleus (Ferreira et al. 1997) may permit chromosomes to enter "factories" that contain all the necessary enzymatic machinery for replication (reviewed in Jackson 1995).Of the many discrete domains identified throughout the nucleus, the largest are nucleoli, sites of ribosomal RNA synthesis and processing, and sites of preribosomal particle assembly (reviewed in Scheer and Weisenberger 1994). Other subnuclear bodies that appear as punctate structures under immunofluorescence (IF) microscopy include various dynamic structures involved in the maintenance and replication of DNA and RNA synthesis, processing, and transport (reviewed in Nickerson et al. 1995): replication foci, transcript foci, speckled domains, coiled bodies, gems, and promyelocytic leukemia protein (PML) nuclear bodies. Spliceosomal small nuclear (sn) ribonucleoprotein (RNP) components and a subset of non-snRNP splicing factors can be found concentrated in discrete subnuclear domains called "coiled bodies" (Matera and Frey 1998 [in this issue]). It is becoming increasingly apparent that the nucleus has an organization and contains a number of discrete macromolecular domains that coordinate a variety of nuclear processes.
Transcriptional induction of genes is an essential part of the cellular response to interferons. We have established a cDNA library from human lymphoblastoid Daudi cells treated for 16 h with human ␣/-interferon (IFN) and made use of differential screening to search for as yet unidentified IFN-regulated genes. In the course of this study, we have isolated a human cDNA that codes for a 20-kDa protein sharing striking homology with the product of the Xenopus laevis XPMC2 gene. This new gene is induced by both type I and II IFNs in various cell lines and will be referred to as ISG20 for interferon-stimulated gene product of 20 kDa. Confocal immunofluorescence analysis of the subcellular localization of ISG20 protein reveals that it is closely associated with PML and SP100 gene products within the large nuclear matrix-associated multiprotein complexes termed the PML nuclear bodies. The interferons (IFNs)1 are a family of secreted multifunctional proteins that exert a broad spectrum of biological activities. First characterized for their potent antiviral properties, it has now been established that they are involved in a number of regulatory functions such as control of cell proliferation, differentiation, and regulation of the immune system (1, 2). Binding of both type I IFN (IFN-␣/) and type II IFN (IFN-␥) to different cell-surface receptors (3, 4) activates transduction pathways via tyrosine phosphorylation of latent cytoplasmic transcription factors termed STAT factors (for signal transducer and activator of transcription) (5-11). The STAT factors are assembled to form the specific transcription complexes ISGF3 (for interferon-stimulated gene factor 3) for IFN-␣/ and GAF (for IFN-␥ activation factor) for IFN-␥. These transcription factors act at different cis-acting DNA elements termed the IFN-stimulated responsive element for ISGF3 and the IFN-␥ activation site for GAF and are located in the promoter region of IFN-induced genes (12-18).The diverse biological actions of IFNs are thought to be mediated by the products of specific but usually overlapping sets of cellular genes induced in the target cells. More recently, some interferon-induced proteins have been located within discrete nuclear structures termed nuclear bodies (19 -22). Previously defined by electron microscopy as dense 0.3-0.5-nm diameter spherical particles, the nuclear bodies, so-called PML (for promyelocytic leukemia protein) nuclear bodies (PML NBs), appear characteristic of large multiprotein complexes associated with the nuclear matrix (23-28). These structures are distinct from other well described subnuclear domains such as the nucleolus, the interchromatin granules, the perichromatin fibrils, and the coiled bodies (for review, see Ref.
Polycomb group (PcG) proteins were first described in Drosophila as factors responsible for maintaining the transcriptionally repressed state of Hox/homeotic genes in a stable and heritable manner throughout development. A growing number of vertebrate genes related to the Drosophila PcG proteins have recently been identified, including two Polycomb orthologues, Pc2 and M33. PcG proteins form multiprotein complexes, termed PcG bodies, that are thought to repress transcription by altering chromatin structure. Here we report the identification and characterization of HPC3 (human Polycomb 3), a novel PcG protein isolated in a yeast two-hybrid screen using human RING1 as bait. HPC3 shows strong sequence similarity to Drosophila Pc and also to vertebrate Pc2 and M33, particularly within the chromodomain and C-box. Previous studies indicate that M33 and human Pc2 (HPC2) can interact with RING1, and we show here that HPC3 also binds to RING1. This interaction is dependent upon the HPC3 C-box but, only partially on the RING finger of RING1. In contrast to HPC2, HPC3 interactions with RING1 are only observed in vivo with covalently modified forms of RING1. HPC3 also colocalizes with other PcG proteins in human PcG bodies. Consistent with its role as a PcG member, HPC3 is able to act as a long range transcriptional silencer when targeted to a reporter gene by a heterologous DNA-binding domain. Taken together, these data suggest that HPC3 is part of a large multiprotein complex that also contains other PcG proteins and is involved in repression of transcriptional activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.