Highly invasive surgical procedures, such as the implantation of a prosthetic device, require correct force delivery to achieve desirable outcomes and minimize trauma induced during the operation. Improvement in surgeon technique can reduce the chances of excessive force application and lead to optimal placement of the electrode array. The fundamental factors that affect the degree of success for cochlear implant recipients are identified through empirical methods. Insertion studies are performed to assess force administration and electrode trajectories during implantations of the Nucleus reg 24 Contourtrade and Nucleus reg 24 Contour Advancetrade electrodes into a synthetic model of the human Scala Tympani, using associated methods. Results confirm that the advance off-stylet insertion of the soft-tipped contour advance electrode gives an overall reduction in insertion force. Analysis of force delivery and electrode positioning during cochlear implantation can help identify and control key factors for improvement of insertion method. Based on the findings, suggestions are made to enhance surgeon technique.
Disciplines
Physical Sciences and Mathematics
Publication DetailsThis article was originally published as Todd, C Naghdy,
Recent neurological research indicates that the impaired motor skills of post-stroke patients can be enhanced and possibly restored through task-oriented repetitive training. This is due to neuroplasticity – the ability of the brain to change through adulthood. Various rehabilitation processes have been developed to take advantage of neuroplasticity to retrain neural pathways and restore or improve motor skills lost as a result of stroke or spinal cord injuries (SCI). Research in this area over the last few decades has resulted in a better understanding of the dynamics of rehabilitation in post-stroke patients and development of auxiliary devices and tools to induce repeated targeted body movements. With the growing number of stroke rehabilitation therapies, the application of robotics within the rehabilitation process has received much attention. As such, numerous mechanical and robot-assisted upper limb and hand function training devices have been proposed. A systematic review of robotic-assisted upper extremity (UE) motion rehabilitation therapies was carried out in this study. The strengths and limitations of each method and its effectiveness in arm and hand function recovery were evaluated. The study provides a comparative analysis of the latest developments and trends in this field, and assists in identifying research gaps and potential future work.
Diabetes is a condition where the body is incapable of proper utilization of glucose and one that, if not properly managed, can lead to critical illness. Glucose monitoring and decision support is vital in avoiding potential adverse health effects. Current methods mainly involve invasive blood extraction for the purposes of blood glucose level notification, yet such methods rely on active user participation and subjective interpretation of the result. This paper reviews existing research in methods of extraction and monitoring of glucose levels. The purpose of this paper is to examine blood glucose extraction methods in addition to indicators of blood glucose level, toward development of an innovative, non-invasive extraction technology. Decision support methods are also analyzed toward customized, automated, and intelligent diabetic management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.