Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade the components of the extracellular matrix (ECM). The balance between MMPs and their inhibitors [tissue inhibitors of metalloproteinases (TIMPs)] in the pericellular environment determines the most significant proteolytic events in tissue remodeling. In vitro evidence is accumulating that these molecules may be crucial in the maturation of neural cells. Here, we investigated the in vivo expression of MMPs 2, 3, and 9 and TIMPs 1, 2, and 3 in the developing and adult rat cerebellum using immunohistochemistry and in situ hybridization. During postnatal development, all Purkinje (PK) cell somata expressed all the MMPs and TIMPs studied, whereas their growing dendritic trees expressed only MMP 3 and TIMP 3. In the adult, MMP 3 was confined to PK cell bodies, whereas TIMP 3 was expressed in PK cell somata and processes. Irrespective of the developmental stage, Bergmann glial processes contained only MMP 9, but their somata contained both TIMP 1 and MMP 9. In granular cells, MMPs 3 and 9 and TIMPs 1, 2, and 3 were chiefly detected at a time when migration is known to be maximal; except for that of TIMP 1, their expression persisted in the internal granular layer in the adult. The functional relevance of MMP expression was verified by gelatin zymography. MMP 9 activity was maximal on postnatal day 10 (P10) and was detectable at a low level on P15 and in the adult, whereas MMP 2 activity remained similar throughout postnatal development. Regional and cell-specific expression of MMPs and TIMPs closely reflects the successive stages of cerebellar development, thereby suggesting a pivotal role for ECM proteolysis in brain development and plasticity.
The dynamic and coordinated interaction between cells and their microenvironment controls cell migration, proliferation, and apoptosis, mediated by different cell surface molecules. We have studied the response of a neuroectodermal progenitor cell line, Dev, to a guidance molecule, semaphorin 3A (Sema3A), described previously as a repellent-collapsing signal for axons, and we have shown that Sema3A acts as a repellent guidance cue for migrating progenitor cells and, on prolonged application, induces apoptosis. Both repulsion and induction of cell death are mediated by neuropilin-1, the ligand-binding component of the Sema3A receptor. The vascular endothelial growth factor, VEGF165, antagonizes Sema3A-induced apoptosis and promotes cell survival, migration, and proliferation. Surprisingly, repulsion by Sema3A also depends on expression of VEGFR1, a VEGF165 receptor, expressed in Dev cells. Moreover, we found that these repulsive effects of Sema3A require tyrosine kinase activity, which can be attributed to VEGFR1. These results indicate that the balance between guidance molecules and angiogenic factors can modulate the migration, apoptosis (or survival), and proliferation of neural progenitor cells through shared receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.