Cell pH was monitored in suspensions of medullary thick ascending limbs (MTALs) of rat kidney to determine possible effects of various transduction pathways on apical Na(+)-K+ (NH4+)-2Cl- cotransport, the activity of which was measured as the bumetanide-sensitive component of cell acidification caused by abrupt exposure to 4 mM NH4Cl. 8-Bromoadenosine 3',5'-cyclic monophosphate stimulated cotransport activity through activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA), since the cAMP effect was abolished by N-[2-(p- bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89); stimulation by cAMP (P < 0.02) was observed even when other Na+, Cl-, and K+ carriers were blocked by ouabain, diphenylamine-2-carboxylate, and barium, which indicates that cotransport was directly affected by PKA. Phorbol 12,13-dibutyrate also stimulated cotransport activity (P < 0.03), which was abolished by protein kinase C (PKC) blockade by staurosporine. In contrast, cotransport activity was reduced (P < 0.001) by arachidonic acid or 20-hydroxyeicosatetraenoic acid (20-HETE), as well as by an ionomycin-induced rise in cytosolic Ca2+ ([Ca2+]i). Inhibition by arachidonic acid or ionomycin was abolished by econazole and SKF-525A that inhibit cytochrome P-450-dependent monoxygenase, which produces 20-HETE from arachidonic acid in the MTAL, and the ionomycin effect was prevented when phospholipase A2 (PLA2) was blocked by 4-bromophenacyl bromide or oleyloxyethyl phosphorylcholine. The results demonstrate that MTAL apical Na(+)-K+(NH4+)-2Cl- cotransport is stimulated by PKA and PKC and inhibited by 20-HETE that may be produced after a rise in [Ca2+]i through PLA2 activation.
Cell pH was monitored in medullary thick ascending limbs to determine effects of ANG II on Na+-K+([Formula: see text])-2Cl−cotransport. ANG II at 10−16to 10−12 M inhibited 30–50% ( P < 0.005), but higher ANG II concentrations were stimulatory compared with the 10−12 M ANG II level cotransport activity; eventually, 10−6 M ANG II stimulated 34% cotransport activity ( P < 0.003). Inhibition by 10−12M ANG II was abolished by phospholipase C (PLC), diacylglycerol lipase, or cytochrome P-450-dependent monooxygenase blockade; 10−12 M ANG II had no effect additive to inhibition by 20-hydroxyeicosatetranoic acid (20-HETE). Stimulation by 10−6 M ANG II was abolished by PLC and protein kinase C (PKC) blockade and was partially suppressed when the rise in cytosolic Ca2+ was prevented. All ANG II effects were abolished by DUP-753 (losartan) but not by PD-123319. Thus ≤10−12 M ANG II inhibits via 20-HETE, whereas ≥5 × 10−11 M ANG II stimulates via PKC Na+-K+([Formula: see text])-2Cl−cotransport; all ANG II effects involve AT1 receptors and PLC activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.