We present an interactive, hybrid human-computer method for object classification. The method applies to classes of objects that are recognizable by people with appropriate expertise (e.g., animal species or airplane model), but not (in general) by people without such expertise. It can be seen as a visual version of the 20 questions game, where questions based on simple visual attributes are posed interactively. The goal is to identify the true class while minimizing the number of questions asked, using the visual content of the image. We introduce a general framework for incorporating almost any off-the-shelf multi-class object recognition algorithm into the visual 20 questions game, and provide methodologies to account for imperfect user responses and unreliable computer vision algorithms. We evaluate our methods on Birds-200, a difficult dataset of 200 tightly-related bird species, and on the Animals With Attributes dataset. Our results demonstrate that incorporating user input drives up recognition accuracy to levels that are good enough for practical applications, while at the same time, computer vision reduces the amount of human interaction required.
We propose a visual recognition system that is designed for fine-grained visual categorization. The system is composed of a machine and a human user. The user, who is unable to carry out the recognition task by himself, is interactively asked to provide two heterogeneous forms of information: clicking on object parts and answering binary questions. The machine intelligently selects the most informative question to pose to the user in order to identify the object's class as quickly as possible. By leveraging computer vision and analyzing the user responses, the overall amount of human effort required, measured in seconds, is minimized. We demonstrate promising results on a challenging dataset of uncropped images, achieving a significant average reduction in human effort over previous methods.
Current human-in-the-loop fine-grained visual categorization systems depend on a predefined vocabulary of attributes and parts, usually determined by experts. In this work, we move away from that expert-driven and attributecentric paradigm and present a novel interactive classification system that incorporates computer vision and perceptual similarity metrics in a unified framework. At test time, users are asked to judge relative similarity between a query image and various sets of images; these general queries do not require expert-defined terminology and are applicable to other domains and basic-level categories, enabling a flexible, efficient, and scalable system for finegrained categorization with humans in the loop. Our system outperforms existing state-of-the-art systems for relevance feedback-based image retrieval as well as interactive classification, resulting in a reduction of up to 43% in the average number of questions needed to correctly classify an image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.