Extant protein-coding sequences span a huge range of ages, from those that emerged only recently to those present in the last universal common ancestor. Because evolution has had less time to act on young sequences, there might be ‘phylostratigraphy’ trends in any properties that evolve slowly with age. A long-term reduction in hydrophobicity and hydrophobic clustering was found in previous, taxonomically restricted studies. Here we perform integrated phylostratigraphy across 435 fully sequenced species, using sensitive HMM methods to detect protein domain homology. We find that the reduction in hydrophobic clustering is universal across lineages. However, only young animal domains have a tendency to have higher structural disorder. Among ancient domains, trends in amino acid composition reflect the order of recruitment into the genetic code, suggesting that the composition of the contemporary descendants of ancient sequences reflects amino acid availability during the earliest stages of life, when these sequences first emerged.
The effectiveness of selection varies among species. It is often estimated by means of an 'effective population size' based on neutral polymorphism, but this is confounded in complex ways with demography. The strength of codon bias more directly pertains to how well adaptation at many sites can be maintained in the face of deleterious mutations, but past metrics that compare codon bias across species are confounded by among-species variation in %GC content and/or amino acid composition. Here we propose a new Codon Adaptation Index of Species (CAIS) that corrects for both confounders. Unlike previous metrics, CAIS yields the expected relationship with adult vertebrate body mass. As an example of the use of CAIS, we ask whether protein domains evolve lower intrinsic structural disorder (ISD) when present in more exquisitely adapted species, as expected given that ISD is higher in eukaryotic proteomes than prokaryotic proteomes. Using phylogenetically corrected linear models, we find, contrary to expectations, that the ISD of a given protein domain evolves to be higher when in well-adapted species. This effect is stronger in young protein domains but is also present in ancient domains.
Extant protein-coding sequences span a huge range of ages, from those that emerged only recently in particular lineages, to those present in the last universal common ancestor. Because evolution has had less time to act on young sequences, there might be "phylostratigraphy" trends in any properties that evolve slowly with age. Indeed, a long-term reduction in hydrophobicity and in hydrophobic clustering has been found in previous, taxonomically restricted studies. Here we perform integrated phylostratigraphy across 435 fully sequenced and dated eukaryotic species, using sensitive HMM methods to detect homology of protein domains (which may vary in age within the same gene), and applying a variety of quality filters. We find that the reduction in hydrophobic clustering is universal across diverse lineages, showing limited sign of saturation. But the tendency for young domains to have higher protein structural disorder, driven primarily by more hydrophilic amino acids, is found only among young animal domains, and not young plant domains, nor ancient domains predating the existence of the last eukaryotic common ancestor. Among ancient domains, trends in amino acid composition reflect the order of recruitment into the genetic code, suggesting that events during the earliest stages of life on earth continue to have an impact on the composition of ancient sequences.
The nearly neutral theory of molecular evolution posits variation among species in the effectiveness of selection. In an idealized model, the census population size determines both this minimum magnitude of the selection coefficient required for deleterious variants to be reliably purged, and the amount of neutral diversity. Empirically, an “effective population size” is often estimated from the amount of putatively neutral genetic diversity, and is assumed to also capture a species’ effectiveness of selection. The degree to which selection maintains preferred codons has the potential to more directly quantify the effectiveness of selection. However, past metrics that compare codon bias across species are confounded by among-species variation in %GC content and/or amino acid composition. Here we propose a new Codon Adaptation Index of Species (CAIS) that corrects for both confounders. Unlike previous metrics of codon bias, CAIS yields the expected relationship with adult vertebrate body mass. We demonstrate the use of CAIS correlations to show that the protein domains of more highly adapted vertebrate species evolve higher intrinsic structural disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.