The last decade has seen a sharp increase in nematicide research in the agricultural industry. As a result, several new synthetic nematicides have become available to growers, and several more are expected in the near future. This new interest in nematicides is directly related to the growing demand for safer and more selective products, and the increasing regulatory pressure on many of the traditional nematicides. This has led to a ban of several widely used fumigant (e.g. methyl bromide) and non-fumigant (e.g. aldicarb) nematicides. The loss of traditional nematicides, combined with a lack of replacement products and awareness of the damage that nematodes can cause, has not only raised concern among growers, but has also created new opportunities for the crop protection industry. Nematicides have become a priority, and many companies are now allocating significant research dollars to discover new nematicides. The new nematicides are very different from previous products: (i) they are more selective, often only targeting nematodes, and (ii) they are less toxic, and safer to use. This review article describes these new developments by discussing the challenges that are associated with finding new nematicides, reviewing the nature, characteristics, and efficacy of new nematicides, and discussing the impact they could have on future nematode management.
Meloidogyne species are one of the most important groups of plant-parasitic nematodes globally because of their ability to damage most cultivated plants. Although they are widespread and economically important, there are limited control measures to combat these nematodes. New nonfumigant nematicides have been discovered that have the potential to be widely utilized for the management of plant-parasitic nematodes. Because of the longer half-lives in soil and lower toxicity of new nematicides compared with traditional fumigant and nonfumigant nematicides, understanding how nematodes respond to sublethal doses of nematicides is imperative to understanding whether nematicide resistance has the potential to develop. Characterizing responses of nematodes to sublethal doses will provide the foundation for future work, such as gene expression studies. In this study, the nematicides oxamyl (Vydate), fluazaindolizine (Salibro), fluensulfone (Nimitz), and fluopyram (Velum), were evaluated to understand how sublethal doses affect the fecundity and mobility of Meloidogyne incognita second-stage juveniles (J2). Using a microwell assay system, dose-response curves for each nematicide were established for M. incognita J2. Fluopyram was the most toxic nematicide, with effective doses up to 230 times lower than that of other nematicides. The other nematicides had predicted ED50 values (effective doses that resulted in 50% of the population becoming inactive) of 89.4, 131.7, and 180.6 ppm for oxamyl, fluensulfone, and fluazaindolizine, respectively. The 24-h ED50 of each nematicide was then used in both motility and infectivity assays. The motility and activity of M. incognita J2 exposed to ED50 doses of fluazaindolizine and fluensulfone was significantly reduced, with nematodes initially being motile but eventually becoming inactive. However, the motility of M. incognita J2 exposed to ED50 doses of fluopyram and oxamyl was not different from a water control. In a pot assay, M. incognita J2 exposed to ED50 doses of fluazaindolizine, oxamyl, and fluensulfone were unable to reproduce on tomato, with reproduction factors (RF = final population density/initial population density) of 0 to 0.03. Fluopyram did not reduce reproduction of M. incognita, with a mean RF of 38.7 ± 4.5, which was similar to the RF of 46.3 ± 4.6 for the water control. This study is the first comprehensive evaluation of M. incognita activity, motility, and fecundity after exposure to the traditional nematicide, oxamyl, as well as three new nematicides, fluazaindolizine, fluopyram, and fluensulfone.
Cyst nematodes are plant pathogens that infect a wide range of economically important crops. One parasitic mechanism employed by cyst nematodes is the production and in planta delivery of effector proteins to modify plant cells and suppress defences to favour parasitism. This study focuses on GLAND4, an effector of Heterodera glycines and H. schachtii, the soybean and sugar beet cyst nematodes, respectively. We show that GLAND4 is recognized by the plant cellular machinery and is transported to the plant nucleus, an organelle for which little is known about plant nematode effector functions. We show that GLAND4 has DNA-binding ability and represses reporter gene expression in a plant transcriptional assay. One DNA fragment that binds to GLAND4 is localized in an Arabidopsis chromosomal region associated with the promoters of two lipid transfer protein genes (LTP). These LTPs have known defence functions and are down-regulated in the nematode feeding site. When expressed in Arabidopsis, the presence of GLAND4 causes the down-regulation of the two LTP genes in question, which is also associated with increased susceptibility to the plant-pathogenic bacterium Pseudomonas syringae. Furthermore, overexpression of one of the LTP genes reduces plant susceptibility to H. schachtii and P. syringae, confirming that LTP repression probably suppresses plant defences. This study makes GLAND4 one of a small subset of characterized plant nematode nuclear effectors and identifies GLAND4 as the first DNA-binding, plant-parasitic nematode effector.
Radopholus similis is an economically important pest of both banana and citrus in tropical regions. Here we present draft genomes from two populations of R. similis from Costa Rica that were created and assembled using short read libraries from Illumina HiSeq technology.
The Pacific Northwest (PNW) of the United States (Idaho, Oregon, and Washington) is a diverse agricultural production area with over 400 different commodities grown in the region. Plant-parasitic nematodes are a constraint to the production of many of these commodities. Soil sample data from 2012 to 2016 were obtained from nematode diagnostic laboratories in the region to assess trends in occurrence, population densities, and distribution of plant-parasitic nematodes in the PNW. A total of 38,022 unique data points were analyzed. The number of plant-parasitic nematode samples processed in the PNW by diagnostic laboratories has significantly increased from 2012 to 2016. Fifteen genera of plant-parasitic nematodes were identified by diagnostic laboratories, with 86% of the samples in the PNW containing at least one plant-parasitic nematode genus. These laboratories provide a valuable service to agriculture in the PNW. Additionally, they serve as a rich source of information on plant-parasitic nematode distribution, occurrence, and abundance that, when analyzed, provides an empirical basis upon which to interpret individual grower reports and make management recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.