The growing prevalence of antifungal drug resistance coupled with the slow development of new, acceptable drugs and fungicides has raised interest in natural products (NPs) for their therapeutic potential and level of acceptability. However, a number of well-studied NPs are considered promiscuous molecules. In this study, the advantages of drug–drug synergy were exploited for the discovery of pairwise NP combinations with potentiated antifungal activity and, potentially, increased target specificity. A rational approach informed by previously known mechanisms of action of selected NPs did not yield novel antifungal synergies. In contrast, a high-throughput screening approach with yeast revealed 34 potential synergies from 800 combinations of a diverse NP library with four selected NPs of interest (eugenol, EUG; β-escin, ESC; curcumin, CUR; berberine hydrochloride, BER). Dedicated assays validated the most promising synergies, namely, EUG + BER, CUR + sclareol, and BER + pterostilbene (PTE) [fractional inhibitory concentrations (FIC) indices ≤ 0.5 in all cases], reduced to as low as 35 (BER) and 7.9 mg L–1 (PTE). These three combinations synergistically inhibited a range of fungi, including human or crop pathogens Candida albicans, Aspergillus fumigatus, Zymoseptoria tritici, and Botrytis cinerea, with synergy also against azole-resistant isolates and biofilms. Further investigation indicated roles for mitochondrial membrane depolarization and reactive oxygen species (ROS) formation in the synergistic mechanism of EUG + BER action. This study establishes proof-of-principle for utilizing high-throughput screening of pairwise NP interactions as a tool to find novel antifungal synergies. Such NP synergies, with the potential also for improved specificity, may help in the management of fungal pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.