Released as a biological control agent of aphids and coccids, Harmonia axyridis (Coleoptera: Coccinellidae) has spread from Asia to four additional continents. Since 1988 H. axyridis has established in at least 38 countries in its introduced range: three countries in North America, six in South America, 26 in Europe and three in Africa. In different continents the species has spread at rates estimated between 100 and 500 km year -1 . Here, the global spread of H. axyridis is thoroughly reviewed. Mechanisms of short-and long-distance dispersal in coccinellids are discussed, as are the reasons for them, with particular emphasis on H. axyridis. Dispersal via anthropogenic means has been particularly important in the case of H. axyridis. Preliminary studies investigating the invasion routes of H. axyridis using genetic analyses (involving both microsatellite and mitochondrial DNA) are outlined.
Correct identification of the source population of an invasive species is a prerequisite for testing hypotheses concerning the factors responsible for biological invasions. The native area of invasive species may be large, poorly known and/or genetically structured. Because the actual source population may not have been sampled, studies based on molecular markers may generate incorrect conclusions about the origin of introduced populations. In this study, we characterized the genetic structure of the invasive ladybird Harmonia axyridis in its native area using various population genetic statistics and methods. We found that native area of H. axyridis most probably consisted of two geographically distinct genetic clusters located in eastern and western Asia. We then performed approximate Bayesian computation (ABC) analyses on controlled simulated microsatellite data sets to evaluate (i) the risk of selecting incorrect introduction scenarios, including admixture between sources, when the populations of the native area are genetically structured and sampling is incomplete and (ii) the ability of ABC analysis to minimize such risks by explicitly including unsampled populations in the scenarios compared. Finally, we performed additional ABC analyses on real microsatellite data sets to retrace the origin of biocontrol and invasive populations of H. axyridis, taking into account the possibility that the structured native area may have been incompletely sampled. We found that the invasive population in eastern North America, which has served as the bridgehead for worldwide invasion by H. axyridis, was probably formed by an admixture between the eastern and western native clusters. This admixture may have facilitated adaptation of the bridgehead population.
There is growing realisation that integrating genetics and ecology is critical in the context of biological invasions, since the two are explicitly linked. So far, the focus of ecological genetics of invasive alien species (IAS) has been on determining the sources and routes of invasions, and the genetic make-up of founding populations, which is critical for defining and testing ecological and evolutionary hypotheses. However an ecological genetics approach can be extended to investigate questions about invasion success and impacts on native, recipient species. Here, we discuss recent progress in the field, provide overviews of recent methodological advances, and highlight areas that we believe are of particular interest for future research. First, we discuss the main insights from studies that have inferred source populations and invasion routes using molecular genetic data, with particular focus on the role of genetic diversity, adaptation and admixture in invasion success. Second, we consider how genetic tools can lead to a better understanding of patterns of dispersal, which is critical to predicting the spread of invasive species, and how studying invasions can shed light on the evolution of dispersal. Finally, we explore the potential for combining molecular genetic data and ecological network modelling to investigate community interactions such as those between predator and prey, and host and parasite. We conclude that invasions are excellent model systems for understanding the role of natural selection in shaping phenotypes and that an ecological genetics approach offers great potential for addressing fundamental questions in invasion biology.
Host range expansion of herbivorous insects is a key event in ecological speciation and insect pest management. However, the mechanistic processes are relatively unknown because it is difficult to observe the ongoing host range expansion in natural population. In this study, we focused on the ongoing host range expansion in introduced populations of the ragweed leaf beetle, Ophraella communa, to estimate the evolutionary process of host plant range expansion of a herbivorous insect. In the native range of North America, O. communa does not utilize Ambrosia trifida, as a host plant, but this plant is extensively utilized in the beetle's introduced range. Larval performance and adult preference experiments demonstrated that native O. communa beetles show better survival on host plant individuals from introduced plant populations than those from native plant populations and they also oviposit on the introduced plant, but not on the native plant. Introduced O. communa beetles showed significantly higher performance on and preference for both introduced and native A. trifida plants, when compared with native O. communa. These results indicate the contemporary evolution of host plant range expansion of introduced O. communa and suggest that the evolutionary change of both the host plant and the herbivorous insect involved in the host range expansion.
A putative new member of the family Totiviridae was identified in arboreal ants (Camponotus nipponicus). The viral dsRNA consisted of 5,713 nt with two overlapping open reading frames (ORFs). ORF1 encodes a putative capsid protein. ORF2 encodes a viral RNA-dependent RNA polymerase (RdRp). ORF2 could be translated as a fusion protein with the ORF1 product through a -1 frameshift in the overlapping ORF1. Phylogenetic analysis based on the RdRp revealed that the virus from C. nipponicus is closely related to Camponotus yamaokai virus, a member of the family Totiviridae, from another ant species. The name Camponotus nipponicus virus (CNV) is proposed for the new virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.