SummaryImmune checkpoint inhibition with monoclonal antibodies is becoming increasingly commonplace in cancer medicine, having contributed to a widening of therapeutic options across oncological indications. Disruption of immune tolerance is the key mechanism of action of checkpoint inhibitors and although immune‐related adverse events are a typical class effect of these compounds, the relationship between toxicity and response is not fully understood. Awareness and vigilance are paramount in recognizing potentially life‐threatening toxicities and managing them in a timely manner. In this review article, we provide an overview of the clinical features, pathological findings and management principles of common immune‐related toxicities, attempting to provide mechanistic insight into an increasingly common complication of cancer therapy.
The origin and function of CD20 + T cells are poorly understood. Here, we characterized CD20 + T cells in mice and humans and investigated how they are affected by anti-CD20 antibody treatment. We report that murine CD20 + T cells are unable to endogenously express the B cell lineage marker CD20; the development of CD20 + T cells in rodents requires the presence of CD20-expressing B cells. Our results demonstrated that both murine and human T cells acquire CD20 from B cells via trogocytosis while being activated by an antigen-presenting B cell. In patients with multiple sclerosis (MS) and mice with experimental autoimmune encephalomyelitis (EAE), expression of CD20 on T cells is associated with an up-regulation of activation markers, proinflammatory cytokines, and adhesion molecules, suggesting high pathogenic potential. Supporting this hypothesis, CD20 + T cells expand during active EAE in rodents; furthermore, adoptive transfer of CD20 + T cells into EAE-diseased mice worsened histological and clinical severity. Of direct therapeutic relevance, we demonstrate that the exclusive therapeutic elimination of CD20 + T cells effectively ameliorates EAE, independent of B cells. The results support the hypothesis that CD20 + T cells arise upon B cell–T cell interaction and that depletion of CD20 + T cells might contribute to the success of anti-CD20 antibody therapies in MS and other inflammatory disorders.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Patients with acute liver failure (ALF) have systemic innate immune suppression and increased susceptibility to infections. Programmed cell death 1 (PD-1) expression by macrophages has been associated with immune suppression during sepsis and cancer. We therefore examined the role of the programmed cell death 1/programmed death ligand 1 (PD-1/PD-L1) pathway in regulating Kupffer cell (KC) inflammatory and antimicrobial responses in acetaminophen-induced (APAP-induced) acute liver injury. Using intravital imaging and flow cytometry, we found impaired KC bacterial clearance and systemic bacterial dissemination in mice with liver injury. We detected increased PD-1 and PD-L1 expression in KCs and lymphocyte subsets, respectively, during injury resolution. Gene expression profiling of PD-1 + KCs revealed an immune-suppressive profile and reduced pathogen responses. Compared with WT mice, PD-1–deficient mice and anti–PD-1–treated mice with liver injury showed improved KC bacterial clearance, a reduced tissue bacterial load, and protection from sepsis. Blood samples from patients with ALF revealed enhanced PD-1 and PD-L1 expression by monocytes and lymphocytes, respectively, and that soluble PD-L1 plasma levels could predict outcomes and sepsis. PD-1 in vitro blockade restored monocyte functionality. Our study describes a role for the PD-1/PD-L1 axis in suppressing KC and monocyte antimicrobial responses after liver injury and identifies anti–PD-1 immunotherapy as a strategy to reduce infection susceptibility in ALF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.