Background: There is a great number of people who require treatment for non-specific low back pain (LBP) yet the causes are still unclear. One proposed cause for LBP is impaired motor control and more specific an impaired postural control. Objective: The purpose of this review is to provide an overview of postural control parameter differences in persons with and without non-specific LBP during quite standing. Methods: A literature search in five databases from January 2000 until January 2018 was performed and was followed by a hand search. Twenty-one articles comparing healthy adults and adults with non-specific LBP in neuromuscular and/or biomechanical parameters during bipedal stance without external perturbation in lab studies were examined. Data extraction and quality assessment were independently performed by two persons. Factors such as study population, outcome measures, and results were extracted from the articles and included in this analysis. Results: The results show that persons with and without non-specific LBP differed in several parameters of postural control such as the center of pressure displacement, postural control strategy, and muscle activation patterns. Conclusion: While the results show that none of the parameters alone lead to significant effects, the combination of neuromuscular and biomechanical parameters was associated with the impairment of postural control in individuals with LBP during standing. Since the studies included in this analysis used different methodological procedures a replication of these studies with standardized procedures is imperative for the acquisition of more conclusive evidence on the differences in postural control during standing.
Background: Chronic non-specific low back pain (LBP) poses a major socioeconomic problem, although the mechanisms are not yet clear. Impaired motor control is one of the mechanisms being discussed.Objectives: The purpose of this review is to provide an overview of motor control parameter differences between individuals with and without non-specific LBP during gait.Methods: A literature search on Medline, SportDiscus, PsychInfo, PsychArticels, EMBASE, and Scopus was performed. Twenty-nine articles comparing healthy adults and adults with chronic non-specific LBP in neuromuscular and/or biomechanical parameters during walking or running were examined. Data extraction and quality assessment were independently performed by two persons. Among others, we extracted population, conditions, outcome measures, and results.Results: The results showed that persons with and without non-specific LBP differed in several parameters of motor control, which was indicated by a lower movement amplitude of the pelvis, more in-phase coordination, lower ground reaction forces, higher stride-to-stride variability and a higher activity in ES in the LBP group.Conclusion: Despite no strong evidence for any of the parameters, a combination of biomechanical and neuromuscular parameters provides a conclusive explanation. Impaired motor control during walking is reflected in higher activity of the erector spinae, which leads to a stiffened lumbar-pelvic region. Different acquisition and processing of data renders making comparisons difficult, whereby standards for future research are necessary.
Recent literature has indicated altered motor control in individuals with non-specific low back pain (NSLBP). These individuals present variations in back muscular activity and center of mass (CoM) oscillations. The aim of this study is to explore the possibility of quantitatively measuring these differences using standard parameters with electronic devices. Twenty individuals with NSLBP and 20 healthy controls, matched by sex and age, performed a total of three trials under three different conditions for 90 seconds each. These conditions were standing on firm ground with eyes open, with eyes closed and standing on unstable foam with eyes open. Balance data was acquired via a Kistler force platform and muscular activity was measured by electromyography derived bilaterally from the erector spinae. Afterwards, participants were asked to complete a questionnaire on their current mood, pain rating, well-being, disability and physical activity. Descriptive data from the questionnaire showed an average acute pain score of 2.6 and an average pain score of 5.1 for the prior six weeks in the NSLBP group, while the control group reported an acute pain of 0.1 and an average pain of 0.5. For wellbeing, differences were found only for the physical scale. Average disability was low for the NSLBP group. No differences in physical activity were found among groups. A repeated measures ANOVA did not show significant differences between groups for any parameter. There was also no main effect for the standing conditions and no interaction between group and condition. Simultaneously measuring biomechanical and neuromuscular parameters, allowed for a fine grain approach to understanding motor control in individuals with NSLBP. This study did not find differences as described in the literature, and suggests further examination of factors involved in pain and control processes to better understand implications of NSLBP and possible avenues for support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.