An analysis was undertaken to measure age-specific vaccine effectiveness (VE) of 2010/11 trivalent seasonal influenza vaccine (TIV) and monovalent 2009 pandemic influenza vaccine (PIV) administered in 2009/2010. The test-negative case-control study design was employed based on patients consulting primary care. Overall TIV effectiveness, adjusted for age and month, against confirmed influenza A(H1N1)pdm 2009 infection was 56% (95% CI 42-66); age-specific adjusted VE was 87% (95% CI 45-97) in <5-year-olds and 84% (95% CI 27-97) in 5- to 14-year-olds. Adjusted VE for PIV was only 28% (95% CI -6 to 51) overall and 72% (95% CI 15-91) in <5-year-olds. For confirmed influenza B infection, TIV effectiveness was 57% (95% CI 42-68) and in 5- to 14-year-olds 75% (95% CI 32-91). TIV provided moderate protection against the main circulating strains in 2010/2011, with higher protection in children. PIV administered during the previous season provided residual protection after 1 year, particularly in the <5 years age group.
SUMMARYGeneral Practitioner consultation rates for influenza-like illness (ILI) are monitored through several geographically distinct schemes in the UK, providing early warning to government and health services of community circulation and intensity of activity each winter. Following on from the 2009 pandemic, there has been a harmonization initiative to allow comparison across the distinct existing surveillance schemes each season. The moving epidemic method (MEM), proposed by the European Centre for Disease Prevention and Control for standardizing reporting of ILI rates, was piloted in 2011/12 and 2012/13 along with the previously proposed UK method of empirical percentiles. The MEM resulted in thresholds that were lower than traditional thresholds but more appropriate as indicators of the start of influenza virus circulation. The intensity of the influenza season assessed with the MEM was similar to that reported through the percentile approach. The MEM pre-epidemic threshold has now been adopted for reporting by each country of the UK. Further work will continue to assess intensity of activity and apply standardized methods to other influenza-related data sources.
Breast cancer is the most frequently diagnosed cancer in women, with more than 2.1 million new diagnoses worldwide every year. Personalised treatment is critical to optimising outcomes for patients with breast cancer. A major advance in medical practice is the incorporation of Clinical Decision Support Systems (CDSSs) to assist and support healthcare staff in clinical decision-making, thus improving the quality of decisions and overall patient care whilst minimising costs. The usage and availability of CDSSs in breast cancer care in healthcare settings is increasing. However, there may be differences in how particular CDSSs are developed, the information they include, the decisions they recommend, and how they are used in practice. This systematic review examines various CDSSs to determine their availability, intended use, medical characteristics, and expected outputs concerning breast cancer therapeutic decisions, an area that is known to have varying degrees of subjectivity in clinical practice. Utilising the methodology of Kitchenham and Charter, a systematic search of the literature was performed in Springer, Science Direct, Google Scholar, PubMed, ACM, IEEE, and Scopus. An overview of CDSS which supports decision-making in breast cancer treatment is provided along with a critical appraisal of their benefits, limitations, and opportunities for improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.