Dysregulation of hepatic glucose production (HGP) serves as a major underlying mechanism for the pathogenesis of type 2 diabetes. The pancreatic hormone glucagon increases and insulin suppresses HGP, controlling blood glucose homeostasis. The forkhead transcription factor Foxo1 promotes HGP through increasing expression of genes encoding the rate-limiting enzymes responsible for gluconeogenesis. We previously established that insulin suppresses Foxo1 by Akt-mediated phosphorylation of Foxo1 at Ser in human hepatocytes. In this study, we found a novel Foxo1 regulatory mechanism by glucagon, which promotes Foxo1 nuclear translocation and stability via cAMP- and protein kinase A-dependent phosphorylation of Foxo1 at Ser Replacing Foxo1-S276 with alanine (A) or aspartate (D) to block or mimic phosphorylation, respectively, markedly regulates Foxo1 stability and nuclear localization in human hepatocytes. To establish in vivo function of Foxo1-Ser phosphorylation in glucose metabolism, we generated Foxo1-S273A and Foxo1-S273D knock-in (KI) mice. The KI mice displayed impaired blood glucose homeostasis, as well as the basal and glucagon-mediated HGP in hepatocytes. Thus, Foxo1-Ser is a new target site identified in the control of Foxo1 bioactivity and associated metabolic diseases.
The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function.
Multiple myeloma (MM) is a plasma cell neoplasm that results in over 11,000 deaths in the United States annually. The backbone therapy for the treatment of MM patients almost always includes combinations with corticosteroids such as dexamethasone (DEX). We found that DEX in combination with selinexor, an inhibitor of exportin-1 (XPO1) activity, synergistically inhibits the mTOR pathway and subsequently promotes cell death in MM cells. Specifically, we show that selinexor induces the expression of the glucocorticoid receptor (GR) and when combined with dexamethasone increases GR transcriptional activity. Moreover, we found that key downstream targets of the mTOR pathway are deregulated by the combination and identified a mechanism in which GR enhances the expression of REDD1 in GR positive cells while suppressing mTOR activity and cell viability. While the single agent activity of selinexor in MM cells appears to be GR-independent, synergy with DEX depends on GR expression. These data suggest that patients with tumor cells that are GR positive will benefit substantially from the combination. The current findings are consistent with the beneficial therapeutic outcome in patients with MM when treated with the combination of selinexor and DEX. In addition, they provide a rationale for testing GR and REDD1 as predictive and prognostic markers of response, respectively, for patients treated with this beneficial combination.
High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout (Ghrelin−/−) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.