There is urgent need for new drug regimens that more rapidly cure tuberculosis (TB). Existing TB drugs and regimens vary in treatment-shortening activity, but the molecular basis of these differences is unclear, and no existing assay directly quantifies the ability of a drug or regimen to shorten treatment. Here, we show that drugs historically classified as sterilizing and non-sterilizing have distinct impacts on a fundamental aspect of Mycobacterium tuberculosis physiology: ribosomal RNA (rRNA) synthesis. In culture, in mice, and in human studies, measurement of precursor rRNA reveals that sterilizing drugs and highly effective drug regimens profoundly suppress M. tuberculosis rRNA synthesis, whereas non-sterilizing drugs and weaker regimens do not. The rRNA synthesis ratio provides a readout of drug effect that is orthogonal to traditional measures of bacterial burden. We propose that this metric of drug activity may accelerate the development of shorter TB regimens.
Developing a cure for HIV is a global priority. Target product profiles are a tool commonly used throughout the drug development process to align interested parties around a clear set of goals or requirements for a potential product. Three distinct therapeutic modalities (combination therapies, ex-vivo gene therapy, and in-vivo gene therapy) for a target product profile for an HIV cure were identified. Using a process of expert face-to-face consultation and an online Delphi consultation, we found a high degree of agreement regarding the criteria for the optimum target product profile. Although the minimum attributes for a cure were debated, the broad consensus was that an acceptable cure need not be as safe and effective as optimally delivered antiretroviral therapy. An intervention that successfully cured a reasonable fraction of adults would be sufficient to advance to the clinic. These target product profiles will require further discussion and ongoing revisions as the field matures.
BackgroundNovel drug regimens are needed for tuberculosis (TB) treatment. New regimens aim to improve on characteristics such as duration, efficacy, and safety profile, but no single regimen is likely to be ideal in all respects. By linking these regimen characteristics to a novel regimen’s ability to reduce TB incidence and mortality, we sought to prioritize regimen characteristics from a population-level perspective.Methods and FindingsWe developed a dynamic transmission model of multi-strain TB epidemics in hypothetical populations reflective of the epidemiological situations in India (primary analysis), South Africa, the Philippines, and Brazil. We modeled the introduction of various novel rifampicin-susceptible (RS) or rifampicin-resistant (RR) TB regimens that differed on six characteristics, identified in consultation with a team of global experts: (1) efficacy, (2) duration, (3) ease of adherence, (4) medical contraindications, (5) barrier to resistance, and (6) baseline prevalence of resistance to the novel regimen. We compared scale-up of these regimens to a baseline reflective of continued standard of care.For our primary analysis situated in India, our model generated baseline TB incidence and mortality of 157 (95% uncertainty range [UR]: 113–187) and 16 (95% UR: 9–23) per 100,000 per year at the time of novel regimen introduction and RR TB incidence and mortality of 6 (95% UR: 4–10) and 0.6 (95% UR: 0.3–1.1) per 100,000 per year. An optimal RS TB regimen was projected to reduce 10-y TB incidence and mortality in the India-like scenario by 12% (95% UR: 6%–20%) and 11% (95% UR: 6%–20%), respectively, compared to current-care projections. An optimal RR TB regimen reduced RR TB incidence by an estimated 32% (95% UR: 18%–46%) and RR TB mortality by 30% (95% UR: 18%–44%). Efficacy was the greatest determinant of impact; compared to a novel regimen meeting all minimal targets only, increasing RS TB treatment efficacy from 94% to 99% reduced TB mortality by 6% (95% UR: 1%–13%, half the impact of a fully optimized regimen), and increasing the efficacy against RR TB from 76% to 94% lowered RR TB mortality by 13% (95% UR: 6%–23%). Reducing treatment duration or improving ease of adherence had smaller but still substantial impact: shortening RS TB treatment duration from 6 to 2 mo lowered TB mortality by 3% (95% UR: 1%–6%), and shortening RR TB treatment from 20 to 6 mo reduced RR TB mortality by 8% (95% UR: 4%–13%), while reducing nonadherence to the corresponding regimens by 50% reduced TB and RR TB mortality by 2% (95% UR: 1%–4%) and 6% (95% UR: 3%–10%), respectively. Limitations include sparse data on key model parameters and necessary simplifications to model structure and outcomes.ConclusionsIn designing clinical trials of novel TB regimens, investigators should consider that even small changes in treatment efficacy may have considerable impact on TB-related incidence and mortality. Other regimen improvements may still have important benefits for resource allocation and outcomes such as patient quality of ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.