Plants synthesize a number of antimicrobial proteins in response to pathogen invasion and environmental stresses. These proteins include two classes of chitinases that have either basic or acidic isoelectric points and that are capable of degrading fungal cell wall chitin. We have cloned and determined the nucleotide sequence of the genes encoding the acidic and basic chitinases from Arabidopsis thaliana (L.) Heynh. Columbia wild type. Both chitinases are encoded by single copy genes that contain introns, a novel feature in chitinase genes. The basic chitinase has 73% amino acid sequence similarity to the basic chitinase from tobacco, and the acidic chitinase has 60% amino acid sequence similarity to the acidic chitinase from cucumber. Expression of the basic chitinase is organ-specific and agedependent in Arabidopsis. A high constitutive level of expression was observed in roots with lower levels in leaves and flowering shoots. Exposure of plants to ethylene induced high levels of systemic expression of basic chitinase with expression increasing with plant age. Constitutive expression of basic chitinase was observed in roots of the ethylene insensitive mutant (etr) of Arabidopsis, demonstrating that root-specific expression is ethylene independent. Expression of the acidic chitinase gene was not observed in normal, untreated Arabidopsis plants or in plants treated with ethylene or salicylate. However, a transient expression assay indicated that the acidic chitinase promoter is active in Arabidopsis leaf tissue.
The herbicide glyphosate is a potent inhibitor of the enzyme 5-enolpyruvylshikimate- 3-phosphate (EPSP) synthase in higher plants. A complementary DNA (cDNA) clone encoding EPSP synthase was isolated from a complementary DNA library of a glyphosate-tolerant Petunia hybrida cell line (MP4-G) that overproduces the enzyme. This cell line was shown to overproduce EPSP synthase messenger RNA as a result of a 20-fold amplification of the gene. A chimeric EPSP synthase gene was constructed with the use of the cauliflower mosaic virus 35S promoter to attain high level expression of EPSP synthase and introduced into petunia cells. Transformed petunia cells as well as regenerated transgenic plants were tolerant to glyphosate.
5‐Enol‐pyruvylshikimate‐3‐phosphate synthase from Agrobacterium sp. CP4 (CP4 EPSPS) confers tolerance to the nonselective herbicide glyphosate (marketed under the trade name Roundup1) when sufficiently expressed in transgenic plants. Dual CP4 EPSPS transgene cassettes were transformed into corn (Zea mays L.) under the transcriptional regulatory control of the rice (Oryza sativa L.) actin 1 (P‐Ract1) and the enhanced Cauliflower mosaic virus 35S (P‐e35S) promoters, respectively, to impart fully constitutive expression in corn. Resulting events were tested for lack of chlorosis and malformation injury after two sequential applications of 1.68 kg acid equivalents (a.e.) ha−1 glyphosate. Agronomic parameters, male fertility, appropriate Mendelian segregation of the trait, plus characteristics of the transgenic integration site were also evaluated. From this selection process, the NK603 event was chosen for commercialization as the event that embodied the most optimal profile of tolerance, agronomics, and molecular characteristics. The NK603 event exhibited high glyphosate tolerance from one transgenic locus bearing a single copy of the dual cassettes integrated into the corn genome with a minimum of target sequence disruption. Trait expression in the NK603 event has remained stable over more than eight generations as shown through tolerance testing, western blots of CP4 EPSPS accumulation, and Southern blot analysis of the transgene.
The lack of alternative selectable markers in crop transformation has been a substantial barrier for commercial application of agricultural biotechnology. We have developed an efficient selection system for wheat transformation using glyphosate-tolerant CP4 and GOX genes as a selectable marker. Immature embryos of the wheat cultivar Bobwhite were bombarded with two separate plasmids harboring the CP4/GOX and GUS genes. After a 1 week delay, the bombarded embryos were transferred to a selection medium containing 2 mM glyphosate. Embryo-derived calli were subcultured onto the same selection medium every 3 weeks consecutively for 9-12 weeks, and were then regenerated and rooted on selection media with lower glyphosate concentrations. Transgenic plants tolerant to glyphosate were recovered. ELISA assay confirmed expression of the CP4 and GOX genes in R0 plants. Southern blot analysis demonstrated that the transgenes were integrated into the wheat genomes and transmitted to the following generation. The use of CP4 and GOX genes as a selectable marker provides an efficient, effective, and alternative transformation selection system for wheat.
We have isolated five members of the multigene family encoding the small subunit (rbcS) of ribulose-1,5-bisphosphate carboxylase in petunia and examined their expression in petunia leaves. Of the five rbcS genes, two (ssu11A and ssu8) are expressed at high levels in petunia leaves. Northern analysis using gene specific oligonucleotide probes revealed that ssu11A accounts for 40% of the total rbcS transcripts in petunia leaves while ssu8 accounts for 4 to 5% of the total rbcS transcripts. Structural comparisons of ssu8 and ssu11A revealed that the coding sequence of ssu8 is interrupted by three introns, while the coding sequence of ssu11A is interrupted by two introns. The positions of the first two introns are identical, the third intron in ssu8 is located in a highly conserved region of the protein. The 5' and 3' flanking sequences of ssu11A are highly homologous to the 5' and 3' flanking sequences of ssu8. S1 nuclease mapping was used to locate the start of transcription of ssu8 and ssu11A and showed that ssu8 mRNA leader differs in sequence from the ssu11A mRNA leader.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.