The difference between the effects of wild-type and mutant forms of PP1alpha suggests that PP1alpha has the potential to arrest cell growth in G1 unless it is inactivated by periodic phosphorylation at Thr320, presumably by CDKs that regulate passage through the G1-S cell cycle transition. Together, the effects in both cell types suggest that PP1alpha requires functional Rb to induce growth arrest, and that possibly another pool of PP1alpha induces cell death. This identifies PP1 as a potential target for therapeutic anti-proliferative strategies.
We have shown earlier that, in cells expressing the retinoblastoma protein (pRB), a protein phosphatase (PP) 1alpha mutant (T320A) resistant to inhibitory phosphorylation by cyclin-dependent kinases (Cdks) causes G(1) arrest. In this study, we examined the cell cycle-dependent phosphorylation of PP1alpha in vivo using three different antibodies. PP1alpha was phosphorylated at Thr-320 during M-phase and again in late G(1)- through early S-phase. Inhibition of Cdk2 led to a small increase in PP1 activity and also prevented PP1alpha phosphorylation. In vitro, PP1alpha was a substrate for Cdk2 but not Cdk4. In pRB-deficient cells, phosphorylation of PP1alpha occurred in M-phase but not at G(1)/S. G(1)/S phosphorylation was at least partially restored after reintroduction of pRB into these cells. Consistent with this result, PP1alpha phosphorylated at Thr-320 co-precipitated with pRB during G(1)/S but was found in extracts immunodepleted of pRB in M-phase. In conjunction with earlier studies, these results indicate that PP1alpha may control pRB function throughout the cell cycle. In addition, our new results suggest that different subpopulations of PP1alpha regulate the G(1)/S and G(2)/M transitions and that PP1alpha complexed to pRB requires inhibitory phosphorylation by G(1)-specific Cdks in order to prevent untimely reactivation of pRB and permit transition from G(1)- to S-phase and/or complete S-phase.
We determined whether quantifying neuroblastoma-associated mRNAs (NB-mRNAs) in bone marrow and blood improves assessment of disease and prediction of disease progression in patients with relapsed/refractory neuroblastoma. mRNA for CHGA, DCX, DDC, PHOX2B, and TH was quantified in bone marrow and blood from 101 patients concurrently with clinical disease evaluations. Correlation between NB-mRNA (delta cycle threshold, Δ, for the geometric mean of genes from the TaqMan Low Density Array NB5 assay) and morphologically defined tumor cell percentage in bone marrow, I-meta-iodobenzylguanidine (MIBG) Curie score, and CT/MRI-defined tumor longest diameter was determined. Time-dependent covariate Cox regression was used to analyze the relationship between Δ and progression-free survival (PFS). NB-mRNA was detectable in 83% of bone marrow (185/223) and 63% (89/142) of blood specimens, and their Δ values were correlated (Spearman = 0.67, < 0.0001), although bone marrow was 7.9 ± 0.5 stronger than blood When bone marrow morphology, MIBG, or CT/MRI were positive, NB-mRNA was detected in 99% (99/100), 88% (100/113), and 81% (82/101) of bone marrow samples. When all three were negative, NB-mRNA was detected in 55% (11/20) of bone marrow samples. Bone marrow NB-mRNA correlated with bone marrow morphology or MIBG positivity ( < 0.0001 and = 0.007). Bone marrow and blood Δ values correlated with PFS ( < 0.001; = 0.001) even when bone marrow was morphologically negative ( = 0.001; = 0.014). Multivariate analysis showed that bone marrow and blood Δ values were associated with PFS independently of clinical disease and gene status ( < 0.001; = 0.055). This five-gene NB5 assay for NB-mRNA improves definition of disease status and correlates independently with PFS in relapsed/refractory neuroblastoma. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.