Mesenchymal stromal cells (MSC) hold great promise for tissue engineering applications and cell‐based therapies. Large cell doses (>1 × 106 cells kg−1) and Good Manufacturing Practices (GMP)‐compliant processes are however required for clinical purposes. Here, a serum‐ and xenogeneic‐free (S/XF) microcarrier‐based culture system is established for the expansion of human umbilical cord matrix (UCM)‐ and adipose tissue (AT)‐derived MSC using the Vertical‐Wheel system (PBS‐0.1 MAG; PBS Biotech). UCM and AT MSC are expanded to maximum cell densities of 5.3 ± 0.4 × 105 cell mL−1 (n = 3) and 3.6 ± 0.7 × 105 cell mL−1 (n = 3), respectively, after 7 days of culture, while maintaining their identity, according to standard criteria. An economic evaluation of the process transfer from T‐flasks to PBS‐0.1 MAG shows a reduction in the costs associated with the production of a dose for an average 70 kg adult patient (i.e., 70 million cells). Costs decrease from $17.0 K to $11.1 K for UCM MSC and from $21.5 K to $11.1 K for AT MSC, proving that the transition to Vertical‐Wheel reactors provides a cost‐effective alternative for MSC expansion. The present work reports the establishment of a scalable and cost‐effective culture platform for the manufacturing of UCM and AT MSC in a S/XF microcarrier‐based system.
Differentiation of pluripotent stem cells (PSCs) into β cells could provide insulin independence for type 1 diabetes (T1D) patients. This approach would reduce the clinical complications that most patients managed on intensive insulin therapy (IIT) face. However, bottlenecks of PSC manufacturing and limited engraftment of encapsulated cells hinder the long‐term effectiveness of these therapies. A bioprocess decision‐support tool is combined with a disease state‐transition model to evaluate the cost‐effectiveness of the stem cell‐based therapy against IIT. Clinical effectiveness is assessed in quality‐adjusted life years (QALYs). Manufacturing costs per patient reduce from $430 000 to $160 000 with optimization of batch size and annual demand. For 96% of the patients, cell therapy improves the quality of life compared to IIT. Cost savings are achieved for 2% of the population through prevention of renal disease. The therapy is cost‐effective for 3.4% of patients when a willingness to pay (WTP) of up to $150 000 per QALY is considered. A 75% cost reduction in the cell therapy price increases cost‐effectiveness likelihood to 51% at $100 000 per QALY. This study highlights the need for scalable manufacturing platforms for stem cell therapies, as well as to prioritizing access to the therapy to patients with an increased likelihood of costly complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.