This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
Three actinobacterial strains were isolated from roots of the salt-marsh plant Halimione portulacoides collected in Ria de Aveiro, Portugal. Molecular typing using enterobacterial repetitive intergenic consensus ERIC-PCR fingerprinting showed the strains to be highly similar. Phylogenetic analyses based on the 16S rRNA gene sequence and multilocus sequence analysis (MLSA) using gyrB, rpoB, recA and ppk and 16S rRNA genes sequences showed that the strains represented a member of the genus Microbacterium, with Microbacterium lacus DSM 18910T as the closest phylogenetic relative. DNA-DNA hybridization between strain RZ63T and its closest relative was below 70 %, supporting the hypothesis that it represented a distinct genomic species. Chemotaxonomic analyses of the novel strains and their DNA G+C contents confirmed their affiliation to the genus Microbacterium, however, the peptidoglycan of RZ63T contained diaminobutyric acid as the diagnostic diamino acid. In addition, physiological and fatty acid analyses revealed differences between these strains and their phylogenetic relatives, reinforcing their status as a distinct species. Based on the physiological, genetic and chemotaxonomic characterisation it is proposed that the strains studied represent a novel species of the genus Microbacterium for which the name Microbacterium diaminobutyricum sp. nov. is proposed (type strain RZ63T=DSM 27101T=CECT 8355T).
Halimione portulacoides is abundant in salt marshes, accumulates mercury (Hg), and was proposed as useful for phytoremediation and pollution biomonitoring. Endophytic bacteria promote plant growth and provide compounds with industrial applications. Nevertheless, information about endophytic bacteria from H. portulacoides is scarce. Endophytic isolates (n = 665) were obtained from aboveground and belowground plant tissues, from two Hg-contaminated sites (sites E and B) and a noncontaminated site (site C), in the estuary Ria de Aveiro. Representative isolates (n = 467) were identified by 16S rRNA gene sequencing and subjected to functional assays. Isolates affiliated with Proteobacteria (64 %), Actinobacteria (23 %), Firmicutes (10 %), and Bacteroidetes (3 %). Altererythrobacter (7.4 %), Marinilactibacillus (6.4 %), Microbacterium (10.2 %), Salinicola (8.8 %), and Vibrio (7.8 %) were the most abundant genera. Notably, Salinicola (n = 58) were only isolated from site C; Hoeflea (17), Labrenzia (22), and Microbacterium (67) only from belowground tissues. This is the first report of Marinilactibacillus in the endosphere. Principal coordinate analysis showed that community composition changes with the contamination gradient and tissue. Our results suggest that the endosphere of H. portulacoides represents a diverse bacterial hotspot including putative novel species. Many isolates, particularly those affiliated to Altererythrobacter, Marinilactibacillus, Microbacterium, and Vibrio, tested positive for enzymatic activities and plant growth promoters, exposing H. portulacoides as a source of bacteria and compounds with biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.