Xenogeneic pericardium-based substitutes are employed for several surgical indications after chemical shielding, limiting their biocompatibility and therapeutic durability. Adverse responses to these replacements might be prevented by tissue decellularization, ideally removing cells and preserving the original extracellular matrix (ECM). The aim of this study was to compare the mostly applied pericardia in clinics, i.e., bovine and porcine tissues, after their decellularization, and obtain new insights for their possible surgical use. Bovine and porcine pericardia were submitted to TRICOL decellularization, based on osmotic shock, detergents and nuclease treatment. TRICOL procedure resulted in being effective in cell removal and preservation of ECM architecture of both species’ scaffolds. Collagen and elastin were retained but glycosaminoglycans were reduced, significantly for bovine scaffolds. Tissue hydration was varied by decellularization, with a rise for bovine pericardia and a decrease for porcine ones. TRICOL significantly increased porcine pericardial thickness, while a non-significant reduction was observed for the bovine counterpart. The protein secondary structure and thermal denaturation profile of both species’ scaffolds were unaltered. Both pericardial tissues showed augmented biomechanical compliance after decellularization. The ECM bioactivity of bovine and porcine pericardia was unaffected by decellularization, sustaining viability and proliferation of human mesenchymal stem cells and endothelial cells. In conclusion, decellularized bovine and porcine pericardia demonstrate possessing the characteristics that are suitable for the creation of novel scaffolds for reconstruction or replacement: differences in water content, thickness and glycosaminoglycans might influence some of their biomechanical properties and, hence, their indication for surgical use.
Notwithstanding their wide exploitation, biological prosthetic heart valves are characterized by limited durability (10-15 years). The treatment of biological tissues with chemical crosslinking agents such as glutaraldehyde accounts for the enhanced risk of structural deterioration associated with the early failure of bioprosthetic valves. To overcome the shortcomings of the currently available solutions, adoption of decellularized biological tissues of animal origin has emerged as a promising approach. The present study aims to assess in vitro cardiovascular scaffolds composed of bovine pericardium decellularized with the novel TRITDOC (TRIton-X100 and TauroDeOxyCholic acid) procedure. The effects of the treatment have been assessed by means of histological, biomolecular, cellular, biochemical and biomechanical analyses. The TRITDOC procedure grants the complete decellularization of bovine pericardial scaffolds while preserving the extracellular matrix architecture and the biomechanical properties. With a dedicated ELISA test, the TRITDOC procedure has been proven to ensure the complete removal of the alphaGal antigen, responsible for hyperacute rejection and for long-term deterioration of xenogenic biomaterials. Static seeding of the acellular pericardial patches with human adipose-derived stem cells resulted in an evenly repopulated scaffold without signs of calcification. The in vitro cyto-/immuno-compatibility response of the TRITDOC-bovine pericardium was compared with glutaraldehyde-treated xenogenic pericardium collected from two bioprosthetic devices currently used in clinical practice: PERIMOUNT MAGNA and TRIFECTA. TRITDOC-bovine pericardium exhibited lower complement activation, lower cytotoxicity and a lower tendency to secrete pro-inflammatory cytokines compared to the tested commercial bioprostheses. Therefore, TRITDOC-decellularized pericardium could be considered as possible candidate material for the production of prosthetic heart valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.