The paradigm of smart grids has encouraged new developments of power electronics converters, for instance, in the perspective of renewables and electric mobility applications. Aligned with this perspective, this paper proposes a novel topology of a multilevel bidirectional and symmetrical (MBS) split-pi dc-dc converter. As a central distinguishing feature, it operates with three voltage levels in both dc sides (0, vdc/2, vdc), meaning that the voltage stress in each semiconductor is reduced when compared with the conventional split-pi converters, and it operates with controlled variables (voltage and current) based on the interleaved principle of operation, although it is not an interleaved split-pi converter. As demonstrated along the paper, the MBS split-pi converter can be controlled with current or voltage feedback in any of the dc interfaces, while the common dc-link voltage is controlled by the dc interface where the source is connected. The adopted current and voltage control schemes, as well as the pulse-width modulation, are presented and comprehensively explained. The validation is presented for the main operation modes, where it is possible to verify the claimed distinguishing features of the proposed MBS split-pi converter.
Nowadays, the majority of electronic equipment behave as nonlinear loads, introducing Power Quality (PQ) problems into the Power Grid (PG), namely, current harmonics and low power factor. These PQ problems contribute to the reduction of the efficiency of the transmission and distribution PG, as well as induce the malfunctioning of sensitive loads connected to the PG. Therefore, the development of equipment able to mitigate these PQ problems is extremely important. In this context, this paper presents a novel single-phase Shunt Active Power Filter (SAPF) based on a current-source converter, where the key differencing factor, when compared with the conventional approach, is the reduced dc-link. As the proposed topology requires a reduced dc-link, it represents a relevant advantage, since a typical current-source converter needs an inductor with a high inductance in dc-link, which results in higher losses, costs and component sizing. The proposed SAPF with reduced dc-link is introduced in detail along the paper and a comprehensive comparison with the conventional SAPF is established based on computer simulations. Besides, an experimental validation was carried-out with a developed laboratory prototype, validating the main advantages of the proposed SAPF with reduced dc-link.
This paper presents a bidirectional multilevel dc–dc power converter for electric vehicle (EV) battery charging. The operating principle of the power converter was presented, analyzed, and experimentally validated under normal and fault conditions. The topology under study was integrated into a bipolar dc grid through the split dc-link of the bidirectional multilevel dc–dc power converter. Considering the failures that can occur in the bipolar dc grid, i.e., in each wire of the bipolar dc grid (positive, negative, and neutral), it was experimentally verified that the dc–dc power converter ensures that the EV battery-charging process continues, regardless of the occurrence or absence of open-circuit failures. In light of this fact, the proposed control algorithms and the presented topology were validated through a set of considerable simulation and experimental results, analyzing the distinct states of the power semiconductors, which compose the bidirectional multilevel dc–dc power converter, for distinct conditions of operation. The developed laboratory prototype of the bidirectional multilevel dc–dc power converter for EV battery charging, which was implemented to obtain the experimental results, is described in detail in this paper. The experimental validation was carried out for the main different fault conditions in the bipolar dc grid in terms of open-circuit failures and, moreover, considering the steady-state and transient-state operations of the dc–dc power converter. The experimental analysis demonstrated that even in the presence of failures in the positive, negative, or neutral wires of the bipolar dc grid, the bidirectional multilevel dc–dc power converter guarantees the correct EV battery-charging operation.
This paper presents the experimental validation of a unified three-port topology, integrating a renewable energy source (RES) and an energy storage system (ESS) (or an electric vehicle) with the grid-interface operating as active power filter (APF). The proposed topology is based on a three-phase grid-interface (whose role is to operate as a APF grid-tied inverter capable of compensating current harmonics, imbalanced currents and low power factor), on a RES-interface for solar photovoltaic (PV) panels (whose role is to extract the maximum power from the PV panels), and on an ESS-interface for batteries (whose role is to store/inject energy according to the power management of the electrical installation). The paper presents the control algorithms for each interface within the scope of the different operation modes allowed by the unified three-port topology. Simulation and experimental results are presented in order to validate the distinguishing aspects of the proposed unified three-port topology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.