We present UDDSketch (Uniform DDSketch), a novel sketch for fast and accurate tracking of quantiles in data streams. This sketch is heavily inspired by the recently introduced DDSketch, and is based on a novel bucket collapsing procedure that allows overcoming the intrinsic limits of the corresponding DDSketch procedures. Indeed, the DDSketch bucket collapsing procedure does not allow the derivation of formal guarantees on the accuracy of quantile estimation for data which does not follow a sub-exponential distribution. On the contrary, UDDSketch is designed so that accuracy guarantees can be given over the full range of quantiles and for arbitrary distribution in input. Moreover, our algorithm fully exploits the budgeted memory adaptively in order to guarantee the best possible accuracy over the full range of quantiles. Extensive experimental results on both synthetic and real datasets confirm the validity of our approach. INDEX TERMS Sketches, Quantiles, Streaming Algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.