Given the rise in the incidence of invasive fungal infections (IFIs) and the expanding spectrum of fungal pathogens, early and accurate identification of the causative pathogen is essential. We developed a panfungal PCR assay that targets the internal transcribed spacer 1 (ITS1) region of the ribosomal DNA gene cluster to detect fungal DNA in fresh and formalin-fixed, paraffin-embedded (PE) tissue specimens from patients with culture-proven (n ؍ 38) or solely histologically proven (n ؍ 24) IFIs. PCR products were sequenced and compared with sequences in the GenBank database to identify the causal pathogen. The molecular identification was correlated with results from histological examination and culture. The assay successfully detected and identified the fungal pathogen in 93.6% and 64.3% of culture-proven and solely histologically proven cases of IFI, respectively. A diverse range of fungal genera were identified, including species of Candida, Cryptococcus, Trichosporon, Aspergillus, Fusarium, Scedosporium, Exophiala, Exserohilum, Apophysomyces, Actinomucor, and Rhizopus. For five specimens, molecular analysis identified a pathogen closely related to that identified by culture. All PCR-negative specimens (n ؍ 10) were PE tissues in which fungal hyphae were visualized. The results support the use of the panfungal PCR assay in combination with conventional laboratory tests for accurate identification of fungi in tissue specimens.
Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org/ and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens.
The epidemiology of invasive fungal disease (IFD) due to filamentous fungi other than Aspergillus may be changing. We analysed clinical, microbiological and outcome data in Australian patients to determine the predisposing factors and identify determinants of mortality. Proven and probable non-Aspergillus mould infections (defined according to modified European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria) from 2004 to 2012 were evaluated in a multicentre study. Variables associated with infection and mortality were determined. Of 162 episodes of non-Aspergillus IFD, 145 (89.5%) were proven infections and 17 (10.5%) were probable infections. The pathogens included 29 fungal species/species complexes; mucormycetes (45.7%) and Scedosporium species (33.3%) were most common. The commonest comorbidities were haematological malignancies (HMs) (46.3%) diabetes mellitus (23.5%), and chronic pulmonary disease (16%); antecedent trauma was present in 21% of cases. Twenty-five (15.4%) patients had no immunocompromised status or comorbidity, and were more likely to have acquired infection following major trauma (p <0.01); 61 (37.7%) of cases affected patients without HMs or transplantation. Antifungal therapy was administered to 93.2% of patients (median 68 days, interquartile range 19-275), and adjunctive surgery was performed in 58.6%. The all-cause 90-day mortality was 44.4%; HMs and intensive-care admission were the strongest predictors of death (both p <0.001). Survival varied by fungal group, with the risk of death being significantly lower in patients with dematiaceous mould infections than in patients with other non-Aspergillus mould infections. Non-Aspergillus IFD affected diverse patient groups, including non-immunocompromised hosts and those outside traditional risk groups; therefore, definitions of IFD in these patients are required. Given the high mortality, increased recognition of infections and accurate identification of the causative agent are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.