Glucose transporters (GLUTs) are continuously recycled in 3T3-L1 cells and so insulin, through its action on phosphatidylinositol 3-kinase (PI 3-kinase), could potentially alter the distribution of these transporters by enhancing retention in the plasma membrane or acting intracellularly to increase exocytosis, either by stimulating a budding or a docking and fusion process. To examine the site of involvement of PI 3-kinase in the glucose transporter recycling pathway, we have determined the kinetics of recycling under conditions in which the PI 3-kinase activity is inhibited by wortmannin. Wortmannin addition to fully insulin-stimulated cells induces a net reduction of glucose transport activity with a time course that is consistent with a major effect on the return of internalized transporters to the plasma membrane. The exocytosis of GLUT1 and GLUT4 is reduced to very low levels in wortmannin-treated cells (approximately 0.009 min-1), but the endocytosis of these isoforms is not markedly perturbed and the rate constants are approx. 10-fold higher than for exocytosis (0.099 and 0.165 min-1, respectively). The slow reduction in basal activity following treatment with wortmannin is consistent with a wortmannin effect on constitutive recycling as well as insulin-regulated exocytosis. PI 3-kinase activity that is precipitated by anti-phosphotyrosine, anti(-)[insulin receptor substrate 1 (IRS1)] and anti-alpha-p85 antibodies show the same level of insulin-stimulated activity, approximately 0.5 pmol/20 min per dish of 3T3-L1 cells. Since the activities precipitated by all three antibodies are similar, it seems unlikely that a second insulin receptor substrate, IRS2, contributes significantly to the insulin signalling observed in 3T3-L1 cells. To examine whether insulin targets PI 3-kinase to intracellular membranes we have carried out subcellular fractionation studies. These suggest that nearly all the insulin-stimulated PI 3-kinase activity is located on intracellular, low-density, membranes. In addition, the association of PI 3-kinase with IRS1 appears to partially deplete the cytoplasm of alpha-p85-precipitatable activity, suggesting that IRS1 may redistribute PI 3-kinase from the cytoplasm to the low-density microsome membranes. Taken together, the trafficking kinetic and PI 3-kinase distribution studies suggest an intracellular membrane site of action of the enzyme in enhancing glucose transporter exocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.