Two commercially available TlBr salts were used as the raw material for crystal growths to be used as radiation detectors. Previously, TlBr salts were purified once, twice, and three times by the repeated Bridgman method. The purification efficiency was evaluated by inductively coupled plasma mass spectroscopy (ICP-MS), after each purification process. A compartmental model was proposed to fit the impurity concentration as a function of the repetition number of the Bridgman growths, as well as determine the segregation coefficients of impurities in the crystals. The crystalline structure, the stoichiometry, and the surface morphology of the crystals were evaluated, systematically, for the crystals grown with different purification numbers. To evaluate the crystal as a radiation semiconductor detector, measurements of its resistivity and gamma-ray spectroscopy were carried out, using 241Am and 133Ba sources. A significant improvement of the radiation response was observed in function of the crystal purity.
The effect of HgI 2 crystal encapsulation using different polymer resins, with the intent of avoiding the oxidation of the crystal surface, was evaluated in this work. The crystal was purified and grown by the physical vapor transport (PVT) technique modified. Systematic measurements were carried out for evaluating the stoichiometry, structure orientation, surface morphology and impurity of the crystal grown. The purer region of the crystal grown was selected to be prepared as a radiation detector, applying water-based conductive ink contacts and copper wire on the crystal surfaces. After that, the crystal was encapsulated with a polymeric resin which insulates atmospheric gases, aiming to improve the stability of the HgI 2 detector. Four resins were used for crystal encapslation and the performance of the detector depended on the composition of the resins used. Among the four resins studied to evaluate the influence of encapsulation on the performance of crystals, as a radiation detector, the best result of resistivity and energy spectrum was obtained for the resin #3 (50% -100% of Methylacetate and 5% -10% of n-butylacetate). The encapsulation of crystals with polymer resins, performed with the intent of avoiding the oxidation of the crystal surface, did not compromise the measurements and were fully capable of detecting the presence of gamma radiation. The stability of the encapsulated HgI2 crystal detector was of up to 78 hs, while the stability found for HgI 2 detector no encapsulated was in order 3 ~4 hs.
This work describes the experimental procedure of purification and preparation of BiI 3 crystals by Repeated Vertical Bridgman technique, aiming a future application of this semiconductor crystal as a room temperature radiation detector. The BiI 3 powder used as raw material was purified three times and, at each purification, the crystal was evaluated by systematic measurements of the reduction of the impurities, crystalline structure, stoichiometry and surface morphology. The reduction of the trace metal impurities in the BiI 3 , at each purification, was analyzed by Instrumental Neutron Activation Analysis (INAA), in order to evaluate the efficiency of the purification technique established in this work. It was demonstrated that the Repeated Bridgman technique is effective to reduce the concentration of many impurities in BiI 3 , such as Ag, As, Br, Cr, K, Mo, Na and Sb. The crystalline structure of the BiI 3 crystal purified twice and three times was similar to BiI 3 pattern. However, for BiI 3 powder and purified once, an intensity contribution of the BiOI was observed in the diffractograms. Improvement in the stoichiometric ratio was observed at each purification step, as well as the crystal surface morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.