BackgroundMaize stover is an important source of crop residues and a promising sustainable energy source in the United States. Stalk is the main component of stover, representing about half of stover dry weight. Characterization of genetic determinants of stalk traits provide a foundation to optimize maize stover as a biofuel feedstock. We investigated maize natural genetic variation in genome-wide association studies (GWAS) to detect candidate genes associated with traits related to stalk biomass (stalk diameter and plant height) and stalk anatomy (rind thickness, vascular bundle density and area).ResultsUsing a panel of 942 diverse inbred lines, 899,784 RNA-Seq derived single nucleotide polymorphism (SNP) markers were identified. Stalk traits were measured on 800 members of the panel in replicated field trials across years. GWAS revealed 16 candidate genes associated with four stalk traits. Most of the detected candidate genes were involved in fundamental cellular functions, such as regulation of gene expression and cell cycle progression. Two of the regulatory genes (Zmm22 and an ortholog of Fpa) that were associated with plant height were previously shown to be involved in regulating the vegetative to floral transition. The association of Zmm22 with plant height was confirmed using a transgenic approach. Transgenic lines with increased expression of Zmm22 showed a significant decrease in plant height as well as tassel branch number, indicating a pleiotropic effect of Zmm22.ConclusionSubstantial heritable variation was observed in the association panel for stalk traits, indicating a large potential for improving useful stalk traits in breeding programs. Genome-wide association analyses detected several candidate genes associated with multiple traits, suggesting common regulatory elements underlie various stalk traits. Results of this study provide insights into the genetic control of maize stalk anatomy and biomass.Electronic supplementary materialThe online version of this article (10.1186/s12870-019-1653-x) contains supplementary material, which is available to authorized users.
Autoimmune regulator+ (Aire) medullary thymic epithelial cells (mTECs) play a critical role in tolerance induction. Several studies demonstrated that Aire+mTECs differentiate further into Post‐Aire cells. Yet, the identification of terminal stages of mTEC maturation depends on unique fate‐mapping mouse models. Herein, we resolve this limitation by segmenting the mTEChi(MHCIIhiCD80hi) compartment into mTECA/hi (CD24−Sca1−), mTECB/hi (CD24+Sca1−), and mTECC/hi (CD24+Sca1+). While mTECA/hi included mostly Aire‐expressing cells, mTECB/hi contained Aire+ and Aire− cells and mTECC/hi were mainly composed of cells lacking Aire. The differential expression pattern of Aire led us to investigate the precursor‐product relationship between these subsets. Strikingly, transcriptomic analysis of mTECA/hi, mTECB/hi, and mTECC/hi sequentially mirrored the specific genetic program of Early‐, Late‐ and Post‐Aire mTECs. Corroborating their Post‐Aire nature, mTECC/hi downregulated the expression of tissue‐restricted antigens, acquired traits of differentiated keratinocytes, and were absent in Aire‐deficient mice. Collectively, our findings reveal a new and simple blueprint to survey late stages of mTEC differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.