The endosomal sorting complex required for transport-I (ESCRT-I) complex, which is conserved from yeast to humans, directs the lysosomal degradation of ubiquitinated transmembrane proteins and the budding of the HIV virus. Yeast ESCRT-I contains four subunits, Vps23, Vps28, Vps37, and Mvb12. The crystal structure of the heterotetrameric ESCRT-I complex reveals a highly asymmetric complex of 1:1:1:1 subunit stoichiometry. The core complex is nearly 18 nm long and consists of a headpiece attached to a 13 nm stalk. The stalk is important for cargo sorting by ESCRT-I and is proposed to serve as a spacer regulating the correct disposition of cargo and other ESCRT components. Hydrodynamic constraints and crystallographic structures were used to generate a model of intact ESCRT-I in solution. The results show how ESCRT-I uses a combination of a rigid stalk and flexible tethers to interact with lipids, cargo, and other ESCRT complexes over a span of approximately 25 nm.
The regulated expansion of membrane contact sites, which mediate the nonvesicular exchange of lipids between organelles, requires the recruitment of additional contact site proteins. Yeast Vps13 dynamically localizes to membrane contacts that connect the ER, mitochondria, endosomes, and vacuoles and is recruited to the prospore membrane in meiosis, but its targeting mechanism is unclear. In this study, we identify the sorting nexin Ypt35 as a novel adaptor that recruits Vps13 to endosomal and vacuolar membranes. We characterize an interaction motif in the Ypt35 N terminus and identify related motifs in the prospore membrane adaptor Spo71 and the mitochondrial membrane protein Mcp1. We find that Mcp1 is a mitochondrial adaptor for Vps13, and the Vps13-Mcp1 interaction, but not Ypt35, is required when ER-mitochondria contacts are lost. All three adaptors compete for binding to a conserved six-repeat region of Vps13 implicated in human disease. Our results support a competition-based model for regulating Vps13 localization at cellular membranes.
Endocytosis of receptors at the plasma membrane is controlled by a complex mechanism that includes clathrin, adaptors, and actin regulators. Many of these proteins are conserved in yeast yet lack observable mutant phenotypes, which suggests that yeast endocytosis may be subject to different regulatory mechanisms. Here, we have systematically defined genes required for internalization using a quantitative genome-wide screen that monitors localization of the yeast vesicle-associated membrane protein (VAMP)/synaptobrevin homologue Snc1. Genetic interaction mapping was used to place these genes into functional modules containing known and novel endocytic regulators, and cargo selectivity was evaluated by an array-based comparative analysis. We demonstrate that clathrin and the yeast AP180 clathrin adaptor proteins have a cargo-specific role in Snc1 internalization. We additionally identify low dye binding 17 (LDB17) as a novel conserved component of the endocytic machinery. Ldb17 is recruited to cortical actin patches before actin polymerization and regulates normal coat dynamics and actin assembly. Our findings highlight the conserved machinery and reveal novel mechanisms that underlie endocytic internalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.