The ability for cells to self-synthesize metal-core nanoclusters (mcNCs) offers increased imaging and identification opportunities. To date, much work has been done illustrating the ability for human tumorigenic cell lines to synthesize mcNCs; however, this has not been illustrated for nontumorigenic cell lines. Here, we present the ability for human nontumorigenic microglial cells, which are the major immune cells in the central nervous system, to self-synthesize gold (Au) and iron (Fe) core nanoclusters, following exposures to metallic salts. We also show the ability for cells to internalize presynthesized Au and Fe mcNCs. Cellular fluorescence increased in most exposures and in a dose dependent manner in the case of Au salt. Scanning transmission electron microscopic imaging confirmed the presence of the metal within cells, while transmission electron microscopy images confirmed nanocluster structures and self-synthesis. Interestingly, self-synthesized nanoclusters were of similar size and internal structure as presynthesized mcNCs. Toxicity assessment of both salts and presynthesized NCs illustrated a lack of toxicity from Au salt and presynthesized NCs. However, Fe salt was generally more toxic and stressful to cells at similar concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.