Iterative P450 enzymes are powerful biocatalysts for selective late-stage C-H oxidation of complex natural product scaffolds. These enzymes represent new tools for selectivity and cascade reactions, facilitating direct access to core structure diversification. Recently, we reported the structure of the multifunctional bacterial P450 TamI and elucidated the molecular basis of its substrate binding and strict reaction sequence at distinct carbon atoms of the substrate. Here, we report the design and characterization of a toolbox of TamI biocatalysts, generated by mutations at Leu101, Leu244 and/or Leu295, that alter the native selectivity, step sequence and number of reactions catalyzed, including the engineering of a variant capable of catalyzing a four-step oxidative cascade without the assistance of the flavoprotein and oxidative partner TamL. The tuned enzymes override inherent substrate reactivity enabling catalyst-controlled C-H functionalization and alkene epoxidation of the tetramic acid-containing natural product tirandamycin. Five new, bioactive tirandamycin derivatives (6-10) were generated through TamI-mediated enzymatic synthesis. Quantum mechanics calculations and MD simulations provide important insights on the basis of altered selectivity and underlying biocatalytic mechanisms for enhanced continuous oxidation of the iterative P450 TamI. File list (2) download file view on ChemRxiv TamI_mutants_final.pdf (3.51 MiB) download file view on ChemRxiv SI_TamI_mutants_final.pdf (12.90 MiB) Engineering P450 TamI as an iterative biocatalyst for selective late-stage C-H functionalization and epoxidation of tirandamycin antibiotics
Hybrid antibiotics are an emerging antimicrobial strategy to overcome antibiotic resistance. The natural product thiomarinol A is a hybrid of two antibiotics: holothin, a dithiolopyrrolone (DTP), and marinolic acid, a close analogue of the drug mupirocin that is used to treat methicillin-resistant Staphylococcus aureus (MRSA). DTPs disrupt metal homeostasis by chelating metal ions in cells, whereas mupirocin targets the essential enzyme isoleucyl-tRNA synthetase (IleRS). Thiomarinol A is over 100-fold more potent than mupirocin against mupirocin-sensitive MRSA; however, its mode of action has been unknown. We show that thiomarinol A targets IleRS. A knockdown of the IleRS-encoding gene, ileS, exhibited sensitivity to a synthetic analogue of thiomarinol A in a chemical genomics screen. Thiomarinol A inhibits MRSA IleRS with a picomolar K i and binds to IleRS with low femtomolar affinity, 1600 times more tightly than mupirocin. We find that thiomarinol A remains effective against high-level mupirocin-resistant MRSA and provide evidence to support a dual mode of action for thiomarinol A that may include both IleRS inhibition and metal chelation. We demonstrate that MRSA develops resistance to thiomarinol A to a substantially lesser degree than mupirocin and the potent activity of thiomarinol A requires hybridity between DTP and mupirocin. Our findings identify a mode of action of a natural hybrid antibiotic and demonstrate the potential of hybrid antibiotics to combat antibiotic resistance.
Cobalamin has shown promise as a light-sensitive drug delivery platform owing to its ease of modification and the high quantum yields for drug photorelease. However, studies to date on the general photochemistry of alkyl cobalamins have primarily focused on methyl and adenosyl-substituted derivatives, the natural cofactors present in various enzymatic species. We describe the synthesis and photolytic behavior of cobalamin conjugates comprised of different combinations of fluorophores and β-axial ligands. In general, cobalamin conjugates containing β-axial alkyl substituents undergo efficient photolysis under aqueous conditions, with quantum yields up to >40%. However, substituents that are large and hydrophobic, or unable to readily support the presumed radical intermediate, suffer less efficient photolysis (<15%) than smaller, water-soluble, analogs. By contrast, quantum yields improve by 2-fold in DMF for cobalamins containing large hydrophobic β-axial substituents. This suggests that drug release from carriers comprised of membranous compartments, such as liposomes, may be significantly more efficient than the corresponding photorelease in an aqueous environment. Finally, we explored the impact of fluorophores on the photolysis of alkyl cobalamins under tissue-mimetic conditions. Cobalamins substituted with efficient photon-capturing fluorophores display up to 4-fold enhancements in photolysis relative to unsubstituted derivatives. In summary, we have shown that the photosensitivity of alkyl cobalamin conjugates can be tuned by altering the Co-appended alkyl moiety, modulating the polarity of the environment (solvent), and installing photon-capturing fluorophores onto the cobalamin framework.
<div> <div> <div> <p>Iterative P450 enzymes are powerful biocatalysts for selective late-stage C-H oxidation of complex natural product scaffolds. These enzymes represent new tools for selectivity and cascade reactions, facilitating direct access to core structure diversification. Recently, we reported the structure of the multifunctional bacterial P450 TamI and elucidated the molecular basis of its substrate binding and strict reaction sequence at distinct carbon atoms of the substrate. Here, we report the design and characterization of a toolbox of TamI biocatalysts, generated by mutations at Leu101, Leu244 and/or Leu295, that alter the native selectivity, step sequence and number of reactions catalyzed, including the engineering of a variant capable of catalyzing a four-step oxidative cascade without the assistance of the flavoprotein and oxidative partner TamL. The tuned enzymes override inherent substrate reactivity enabling catalyst- controlled C-H functionalization and alkene epoxidation of the tetramic acid-containing natural product tirandamycin. Five new, bioactive tirandamycin derivatives (6-10) were generated through TamI-mediated enzymatic synthesis. Quantum mechanics calculations and MD simulations provide important insights on the basis of altered selectivity and underlying biocatalytic mechanisms for enhanced continuous oxidation of the iterative P450 TamI. </p> </div> </div> </div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.