SUMMARYAn upwind Euler solver is presented, and applied to multibladed lifting hovering rotor ow. These ows can be simulated as a steady case, in a blade-ÿxed rotating co-ordinate system. However, forward ight simulation will always require an unsteady solution. Hence, as a stepping stone in the development of a forward ight simulation tool, both explicit steady and implicit unsteady simulations of the same hovering case are presented. Convergence of the two approaches is examined and compared, in terms of residual history, cost, and solution evolution, as a means of both validating the unsteady formulation and considering implications for forward ight simulation. Consideration of the solution evolution and wake capturing shows that for hovering rotor cases, the unsteady and steady solutions are the same, but the unsteady solution is more expensive in terms of CPU time. It is also shown that for hover, the fewer real time-steps taken per revolution the more e cient the implicit scheme is. However, this is a characteristic of the case, which results in smooth solution variation between time steps. It is also demonstrated that for rotary ow simulation, the global residual is not a useful quantity to assess convergence. The residual reaches a very low (constant in the implicit case) value while the solution is still evolving.
Aeroelastic analysis is a critical area of the aircraft design process, as a good understanding of the dynamic behaviour of the wing structure is essential to safe operation of the vehicle. The inevitable inaccuracies present in the modelling of such phenomena impose mass penal-
The coupling of independent structural dynamic and inviscid aerodynamic models, in the time domain, is considered. The accuracy and CPU requirements of the two common approaches, namely ‘weak’ and ‘strong’ coupling procedures, are investigated. It is found that the strong coupling scheme is more accurate than the weak coupling approach, and only for large real time-steps is the strong coupling scheme more expensive. The computational method developed is used to perform transonic aeroelastic and aeroservoelastic calculations in the time domain, and used to compute stability (flutter) boundaries of 2D wing sections. A control law is implemented within the aeroelastic solver to investigate active means of flutter suppression via control surface motion. Comparisons of open and closed loop calculations show that the control law can successfully suppress the flutter and results in a significant increase in the allowable speed index in the transonic regime. The effect of structural nonlinearity, in the form of hinge axis backlash is also investigated. The effect is found to be destabilising, but the control law is shown to still alleviate the destabilising effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.