The parabrachial complex, also known as the pneumotaxic center or pontine respiratory group, has long been recognized as an important participant in respiratory control. One line of evidence supporting this idea is the demonstration of changes in breathing pattern following injection of neuroactive substances into or near the parabrachial complex. However, it is not yet known exactly which cell groups and projections mediate those responses. In order to address this issue, we explored the topographic organization of respiratory responses to chemical stimulation of the parabrachial complex of the rat and examined the descending projections of the most sensitive sites. Injection of glutamate (5–100 pmol) at specific sites in or near the parabrachial nucleus produced three distinct site-specific response patterns. First, hyperpnea followed glutamate injection into far rostral and midcaudal areas of the Kolliker-Fuse nucleus and most of the lateral parabrachial nucleus, including the external lateral, central lateral, dorsal lateral, and superior lateral subnuclei. Threshold hyperpneic effects were manifested as single, deepened breaths of premature onset. Suprathreshold doses of glutamate at these locations produced tachypnea. Neurons in these sites projected to the ventral respiratory group in the ventrolateral medulla. Second, the most intense inspiratory facilitatory responses were seen at mid to rostral levels of the Kolliker-Fuse nucleus, near the ventrolateral tip of the superior cerebellar peduncle. Even at threshold doses of glutamate, exhalation was incomplete, resulting in a breathing pattern that resembled apneusis (an inspiratory cramp). This site contained an especially dense cluster of neurons that projected either to the ventrolateral medulla or to the dorsal respiratory group in the nucleus of the solitary tract, but not to both areas. The third type of response, decreases in respiratory rate, occurred following glutamate injection at the most lateral and ventral boundaries of the Kolliker- Fuse nucleus. The most sensitive apneic sites were not found in the parabrachial nucleus but along the dorsal and medial edge of the principal sensory trigeminal nucleus and extending ventrally between the sensory and motor trigeminal nuclei. Scattered neurons in these sites were retrogradely labeled from the ventral but not the dorsal respiratory group. These results indicate that there are anatomically and functionally distinct cell populations in and near the parabrachial complex that, when chemically stimulated, can produce specific and sometimes opposing effects on respiration. The predominant effect of lateral parabrachial stimulation is respiratory facilitation, while inhibitory effects are elicited by trigeminal injections of glutamate.
Tetramethylbenzidine (TMB) as a substrate for horseradish peroxidase (HRP) histochemistry is more sensitive than other chromogens. Its instability in aqueous solutions and ethanol, however, has limited its application. We now report a method for stabilizing TMB by incubation in cornbinations of diaminobenzidine (DAB)/cobalt (Co2)/H2O2. The stabilized TMB product was unaffected by long-term exposures to ethanol, neutral buffers, and subsequent immunohistochernical staining procedures. A procedure is recommended for optimal stabilization of TMB that affords a sensitivity for demonstrating retrogradely labeled perikarya comparable to standard TMB histochemistry. The physical characteristics of the reaction product make 'A preliminary report of part of these results was presented at the 1983 Society for Neuroscience Meeting in Boston, Massachusetts (15).
The tetradecapeptide somatostatin has been implicated as an important regulator of neuronal and neuroendocrine function in the CNS. The cellular actions of somatostatin are mediated by specific receptors. The genes encoding two different somatostatin receptors (SSTRs) have been isolated and characterized, and RNA blotting studies have shown that both SSTR1 and SSTR2 are expressed in the brain. In order to gain a better understanding of the functions of somatostatin in the CNS, the distribution of SSTR1 and SSTR2 mRNAs was determined using the technique of in situ hybridization. SSTR1 mRNA was present throughout the mouse brain, particularly in the supra- and infragranular layers of the cortex, the amygdala, hippocampus, bed nucleus of the stria terminalis, substantia innominata, hypothalamus, pretectum, substantia nigra, parabrachial nucleus, and nucleus of the solitary tract. SSTR2 mRNA was primarily observed in the infragranular layers of the cortex, the amygdala, claustrum, endopiriform nucleus, arcuate and paraventricular nuclei of the hypothalamus, and medial habenular nucleus. Several regions of the brain reported to contain dense somatostatin-like immunoreactive terminal fields and receptor binding sites were devoid of both SSTR1 and SSTR2 mRNA, suggesting the existence of additional SSTR subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.