In this article, the impact of radiative heat loss in a stockpile of combustible material is investigated. The heat loss is attributed to the exothermic chemical reaction when the carbon containing material of the stockpile reacts automatically with the oxygen trapped within the stockpile. The study is modelled in a rectangular slab of thermal conductivity that varies with the temperature and loses heat to the surrounding environment by radiation. The differential equations governing the problem are solved numerically using the Runge-Kutta-Fehlberg (RKF) method coupled with the Shooting technique. The effect of each embedded kinetic parameter on the temperature, oxygen (O2) depletion and carbon dioxide (CO2) emission, is analyzed and the results are graphically expressed and discussed accordingly. The results show that the kinetic parameters which enhance the exothermic chemical reaction correspondingly increase the temperature and the CO2 emission during the combustion process, and in turn, these parameters also increase the depletion of O2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.