Therapeutic strategies are urgently needed for patients with acute myeloid leukemia (AML). Leukocyte immunoglobulinlike receptor B4 (LILRB4), which suppresses T-cell activation and supports tissue infiltration of AML cells, represents an attractive drug target for anti-AML therapeutics. Here, we report the identification and development of an LILRB4specific humanized mAb that blocks LILRB4 activation. This mAb, h128-3, showed potent activity in blocking the development of monocytic AML in various models including patient-derived xenograft mice and syngeneic immunocom-petent AML mice. MAb h128-3 enhanced the anti-AML efficacy of chemotherapy treatment by stimulating mobilization of leukemia cells. Mechanistic studies revealed four concordant modes of action for the anti-AML activity of h128-3: (i) reversal of T-cell suppression, (ii) inhibition of monocytic AML cell tissue infiltration, (iii) antibodydependent cellular cytotoxicity, and (iv) antibodydependent cellular phagocytosis. Therefore, targeting LILRB4 with antibody represents an effective therapeutic strategy for treating monocytic AML.
Metastasis significantly reduces the survival rate of osteosarcoma (OS) patients. Therefore, identification of novel targets remains extremely important to prevent metastasis and treat OS. In this report, we show that SPARCL1 is downregulated in OS by epigenetic methylation of promoter DNA. In vitro and in vivo experiments revealed that SPARCL1 inhibits OS metastasis. We further demonstrated that SPARCL1-activated WNT/β-catenin signaling by physical interaction with various frizzled receptors and lipoprotein receptor-related protein 5/6, leading to WNT–receptor complex stabilization. Activation of WNT/β-catenin signaling contributes to the SPARCL1-mediated inhibitory effects on OS metastasis. Furthermore, we uncovered a paracrine effect of SPARCL1 on macrophage recruitment through activated WNT/β-catenin signaling-mediated secretion of chemokine ligand5 from OS cells. These findings suggest that the targeting of SPARCL1 as a new anti-metastatic strategy for OS patients.
An enhancement near threshold is observed in the omega(phi) invariant mass spectrum from the doubly Okubo-Zweig-Iizuka-suppressed decays of J/psi-->gamma(omega)phi, based on a sample of 5.8 x 10(7) J/psi events collected with the BESII detector. A partial wave analysis shows that this enhancement favors JP=0+, and its mass and width are M=1812(+19)(-26)(stat)+/-18(syst) MeV/c2 and Gamma=105+/-20(stat)+/-28(syst) MeV/c2. The product branching fraction is determined to be B(J/psi-->gammaX)B(X-->omega(phi))=[2.61+/-0.27(stat)+/-0.65(syst)]x10(-4).
The cubic Gd2O3:Eu3+ nanorods were synthesized by a hydrothermal method. The SEM image indicated the nanorods with diameter of 30-35 nm and length of 200-500 nm. The structural stability of Gd2O3:Eu3+ nanorods was investigated by in situ high pressure luminescence and Raman spectra up to 18.9 GPa at room temperature. The results reveals a pressure-induced phase transition from cubic to hexagonal structure at about 11.3 GPa. After releasing pressure, the part of hexagonal structure is retained and the other transfers to monoclinic phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.