While many works investigate spread patterns of fake news in social networks, we focus on the textual content. Instead of relying on syntactic representations of documents (aka Bag of Words) as many works do, we seek more robust representations that may better differentiate fake from legitimate news. We propose to consider the subjectivity of news under the assumption that the subjectivity levels of legitimate and fake news are significantly different. For computing the subjectivity level of news, we rely on a set subjectivity lexicons for both Brazilian Portuguese and English languages. We then build subjectivity feature vectors for each news article by calculating the Word Mover's Distance (WMD) between the news and these lexicons considering the embedding the news words lie in, in order to analyze and classify the documents. The results demonstrate that our method is robust, especially in scenarios where training and test domains are different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.