Cavitation is a common phenomenon and continues to be a primary concern in the fields of hydraulic machinery. To provide a reference for cavitation flow and cavitation performance improvement, this paper presents the experimental study on the cavitation flow structures of the water-jet pump. High-speed photography technology is used to capture the cavitation flow structures and reveal the physical process of cavitation evolution in the water-jet pump. Cavitation–vortex interaction was further explored by numerical simulations. By extracting 24 m/s water velocity isosurface and analyzing the water superficial velocity on the isosurface, the flow characteristics in the high-velocity fluid area under different cavitation stages are revealed. Then, by analyzing the vortex structure on the isosurface, the main factors affecting the development of the vortex structure on the high-velocity fluid area are summarized.
Cavitation can cause noise in the water-jet pump. If cavitation occurs in the water-jet pump, the hydraulic components in the pump are prone to erosion. The surface erosion reduces energy delivery efficiency and increases maintenance costs. The decline in pump performance will lead to the instability of the entire energy system. In this paper, the cavitation flow structure of the water-jet pump is studied by the method of numerical simulation and experiment, which provides a reference for the prediction and improvement of cavitation. Based on the closed test platform, in order to reveal the physical process of cavitation evolution, high-speed photography is used to capture the complex cavitation flow phenomenon in the pump. After that, the cavitation vortex structure was further explored by numerical simulation. Through the simulation of the impeller blade tip leakage flow and the Tip Leakage Vortex Cavitation (TLVC) characteristics under different cavitation conditions, the flow mechanism of the impeller blade tip leakage flow and the separation vortex induced by the cavitation region under different cavitation conditions were revealed. The main factors affecting the development of the cavitation wake vortex structures were summarized.
The idling behavior of the reactor coolant pump is referred to as an important indicator of the safe operation of the nuclear power system, while the idling transition process under the power failure accident condition is developed as a transient flow process. In this process, the parameters such as the flow rate, speed, and head of the reactor coolant pump are all nonlinear changes. In order to ensure the optimal idling behavior of the reactor coolant pump under the power cutoff accident condition, this manuscript takes the guide vanes of the AP1000 reactor coolant pump as the subject of this study. In this paper, the mathematical model of idling speed and flow characteristic curve of reactor coolant pump under the power failure condition were proposed, while the hydraulic modeling database of different vane structure parameters was modeled based on the orthogonal optimization schemes. Furthermore, based on the mathematical modeling framework of multiple linear regressions, the mathematical relationship of the hydraulic performance of each guide vane in different parameters was predicted. The derived model was verified with the idling test data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.