Numerous studies indicate that gamma-aminobutyric acid (GABA) can either hyperpolarize or depolarize hippocampal pyramidal and granule cells. While the inhibitory action of GABA may occur directly on these cells, the excitatory action may be mediated by interactions of GABAergic neurons with each other or with catecholaminergic afferents. We sought to examine the cellular basis for these interactions and their relative frequency. Thus, the ultrastructural morphology of GABAergic neurons and their relation to terminals exhibiting immunoreactivity for the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) were examined in the rat hippocampal formation using combined immunoautoradiographic and peroxidase-antiperoxidase labeling methods. By light microscopy, GABAergic perikarya and processes codistributed most noticeably with TH-containing processes in the hilus of the dentate gyrus (DG) and in strata lucidum, radiatum, and lacunosum-moleculare of the CA3 region of the hippocampus. Thus, these regions were examined further by electron microscopy. In the ultrastructural analysis, GABA-like immunoreactivity (GABA-LI) was detected in neuronal perikarya, dendrites, axons, and axon terminals. The GABA-containing perikarya were large, ovoid (20–40 microns in diameter), and contained abundant cytoplasm and an indented nucleus with one nucleolus. Synaptic junctions on the perikarya and dendrites with GABA-LI were both symmetric and asymmetric. Approximately equal numbers of TH-labeled terminals (19% of 133 in DG; 39% of 26 in CA3) and GABA-containing terminals (19% DG, 15% CA3) formed synapses with GABA-labeled perikarya. The remainder of the presynaptic terminals (62% DG, 46% CA3) were unlabeled, i.e., contained unidentified transmitters. Terminals with GABA-LI (0.5–1.6 microns) contained numerous small clear vesicles and from 0 to 2 large dense-core vesicles. The types of associations formed by terminals with GABA-LI were remarkably similar in the DG and hippocampus proper despite differences in intrinsic cell type and function. Terminals with GABA-LI formed associations with unlabeled perikarya and dendrites (24% of 151 in DG, 25% of 75 in CA3) and synapses with GABA-containing perikarya and dendrites (18% DG, 5% CA3). Additionally, GABAergic terminals converged upon the same perikarya or dendrite as a TH-containing terminal (15% DG, 21% CA3) and were in direct apposition to TH-labeled terminals (19% DG, 20% CA3). The remaining GABAergic terminals (24% DG, 28% CA3) were without any apparent synaptic relations. In both the DG and CA3, the junctions formed by GABAergic terminals were symmetric. Terminals showing colocalization of GABA-LI and TH-I were also detected although rarely.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.