High-performance NiO@C electrochromism with quick electron-transfer and its application in EC eyewear were realized by regulation of carbon residues in MOF derivatives.
The advancement of deep convolutional neural networks (DCNNs) has driven significant improvement in the accuracy of recognition systems for many computer vision tasks. However, their practical applications are often restricted in resource-constrained environments. In this paper, we introduce projection convolutional neural networks (PCNNs) with a discrete back propagation via projection (DBPP) to improve the performance of binarized neural networks (BNNs). The contributions of our paper include: 1) for the first time, the projection function is exploited to efficiently solve the discrete back propagation problem, which leads to a new highly compressed CNNs (termed PCNNs); 2) by exploiting multiple projections, we learn a set of diverse quantized kernels that compress the full-precision kernels in a more efficient way than those proposed previously; 3) PCNNs achieve the best classification performance compared to other state-ofthe-art BNNs on the ImageNet and CIFAR datasets.
Skeleton-based action recognition task is entangled with complex spatio-temporal variations of skeleton joints, and remains challenging for Recurrent Neural Networks (RNNs). In this work, we propose a temporal-then-spatial recalibration scheme to alleviate such complex variations, resulting in an end-to-end Memory Attention Networks (MANs) which consist of a Temporal Attention Recalibration Module (TARM) and a Spatio-Temporal Convolution Module (STCM). Specifically, the TARM is deployed in a residual learning module that employs a novel attention learning network to recalibrate the temporal attention of frames in a skeleton sequence. The STCM treats the attention calibrated skeleton joint sequences as images and leverages the Convolution Neural Networks (CNNs) to further model the spatial and temporal information of skeleton data. These two modules (TARM and STCM) seamlessly form a single network architecture that can be trained in an end-to-end fashion. MANs significantly boost the performance of skeleton-based action recognition and achieve the best results on four challenging benchmark datasets: NTU RGB+D, HDM05, SYSU-3D and UT-Kinect.
Vehicle detection with category inference on video sequence data is an important but challenging task for urban traffic surveillance. The difficulty of this task lies in the fact that it requires accurate localization of relatively small vehicles in complex scenes and expects real-time detection. In this paper, we present a vehicle detection framework that improves the performance of the conventional Single Shot MultiBox Detector (SSD), which effectively detects different types of vehicles in real-time. Our approach, which proposes the use of different feature extractors for localization and classification tasks in a single network, and to enhance these two feature extractors through deconvolution (D) and pooling (P) between layers in the feature pyramid, is denoted as DP-SSD. In addition, we extend the scope of the default box by adjusting its scale so that smaller default boxes can be exploited to guide DP-SSD training. Experimental results on the UA-DETRAC and KITTI datasets demonstrate that DP-SSD can achieve efficient vehicle detection for real-world traffic surveillance data in real-time. For the UA-DETRAC test set trained with UA-DETRAC trainval set, DP-SSD with the input size of 300 × 300 achieves 75.43% mAP (mean average precision) at the speed of 50.47 FPS (frames per second), and the framework with a 512 × 512 sized input reaches 77.94% mAP at 25.12 FPS using an NVIDIA GeForce GTX 1080Ti GPU. The DP-SSD shows comparable accuracy, which is better than those of the compared state-of-the-art models, except for YOLOv3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.