With the coming of intelligent vehicles and vehicular communication, Intelligent Transportation Systems (ITS) of connected vehicles are emerging and now evolving to Cooperative-ITS (C-ITS), as service platforms for smart cities. Considering new service properties, the autonomous cooperation of such vehicles has exhibited novel QoS features that imply new requirements: guaranteeing the traffic efficiency of any emergent vehicle while trying to promote the throughput at an intersection. So, after analyzing the classic reservation-based cooperation mechanisms, new QoS-oriented cooperation methods and policies are studied in this work. Concretely, several models of related traffic objects we have proposed are firstly introduced briefly. Then, the scheduling policies of vehicles approaching an intersection have been presented, including three existing policies (FAFP-SV, FAFP-SQ, and HQEP-SV) and five new polices (FAFP-SQ-SV, FAFP-MQ, HWFP-SQ, HWFP-SQ-SV, HWFP-MQ). These policies combine two major factors: vehicular priority for scheduling and concurrency in traffics. The first one includes the vehicular arrival-time, priority mapped to QoS, and the weight of reserved vehicles on a lane etc. In addition, the second refers to schedule a platoon rather than single vehicle each time, or platoons on different lanes instead of one platoon on only one lane. All these policies have been implemented, and further, verified within the parameter-configurable traffic simulator QoS-CITS (v2.1) we designed and developed with C#. Abundant experiments have been conducted with configured typical traffic scenes, and experimental results show that HWFP-SQ-SV and HWFP-MQ can guarantee both the QoS of emergent vehicles and traffic throughput better than other six policies.
With the emerging vehicular network and the possible diverse applications, intelligent transportation systems (ITS) have been evolving to Cooperative ITS (C-ITS) with connected intelligent vehicles, and the topics in this field have raised more and more research interests recently. However, subjecting to the immaturity of V2X communication technology, the difficulty and high cost to deploy such large scale ITS with intelligent vehicles, emerging studies are stuck with the verification of these big C-ITS. As more and more expected, intelligent vehicles will play important roles in the future smart cities and societies, as diverse mobility carriers. Focusing on new features of these carriers, mainly covering cyber-physical fusion, vehicular networking, service-carrier and so on, one new ITS simulator QoS-CITS for such service-oriented C-ITS is designed and developed. To enhance the adaptability, a scenario reconfigurable architecture is firstly designed, in which scenes can be described via XML file. On this basis, the authors have implemented all reservation-based models of traffic objects, state-driven behaviors, cooperation mechanisms, and policies, which are proposed for service-oriented C-ITS. Through a series of experiments are conducted with different parameters and typical scenes, all simulation functions are efficiently verified. And finally, some important conclusions drawn from large amount of experiments via QoS-CITS are exhibited. It's important to note that, researchers can conduct various experiments, both the traditional Passing-Through-Intersection (PTI) problem and service-oriented cooperation, via setting parameters of QoS-CITS according to their requirements, and can also analyze the performance with statistics data recorded automatically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.