Flash memory is the most widely used non-volatile memory device nowadays. In order to keep up with the demand for increased memory capacities, flash memory has been continuously scaled to smaller and smaller dimensions. The main benefits of down-scaling cell size and increasing integration are that they enable lower manufacturing cost as well as higher performance. Charge trapping memory is regarded as one of the most promising flash memory technologies as further down-scaling continues. In addition, more and more exploration is investigated with high-k dielectrics implemented in the charge trapping memory. The paper reviews the advanced research status concerning charge trapping memory with high-k dielectrics for the performance improvement. Application of high-k dielectric as charge trapping layer, blocking layer, and tunneling layer is comprehensively discussed accordingly.
The highly parallel artificial neural systems based on transistor-like devices have recently attracted widespread attention due to their high-efficiency computing potential and the ability to mimic biological neurobehavior. For the past decades, plenty of breakthroughs related to synaptic transistors have been investigated and reported. In this work, a kind of photoelectronic transistor that successfully mimics the behaviors of biological synapses has been proposed and systematically analyzed. For the individual device, MXenes and the self-assembled titanium dioxide on the nanosheet surface serve as floating gate and tunneling layers, respectively. As the unit electronics of the neural network, the typical synaptic behaviors and the reliable memory stability of the synaptic transistors have been demonstrated through the voltage test. Furthermore, for the first time, the UV-responsive synaptic properties of the MXenes floating gated transistor and its applications, including conditional reflex and supervised learning, have been measured and realized. These photoelectric synapse characteristics illustrate the great potential of the device in bio-imitation vision applications. Finally, through the simulation based on an artificial neural network algorithm, the device successfully realizes the recognition application of handwritten digital images. Thus, this article provides a highly feasible solution for applying artificial synaptic devices to hardware neuromorphic networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.