This paper assesses the performance of an integrated multistage laboratory-scale plant, for the treatment of poultry slaughterhouse wastewater (PSW). The system was comprised of an eco-flush dosed bio-physico pre-treatment unit for fats, oil, and grease (FOG) hydrolysis prior to the PSW being fed to a down-flow expanded granular bed reactor (DEGBR), coupled to a membrane bioreactor (DEGBR-MBR). The system’s configuration strategy was developed to achieve optimal PSW treatment by introducing the enzymatic pre-treatment unit for the lipid-rich influent (PSW) in order to treat FOG including odour causing constituents such as H2S known to sour anaerobic digestion (AD) such that the PSW pollutant load is alleviated prior to AD treatment. This was conducted to aid the reduction in clogging and sludge washout in the DEGBR-MBR systems and to achieve the optimum reactor and membrane system performance. A performance for the treatment of PSW after lipid reduction was conducted through a qualitative analysis by assessing the pre- and post-pre-treatment units’ chemical oxygen demand (COD), total suspended solids (TSS), and FOG concentrations across all other units and, in particular, the membrane units. Furthermore, a similar set-up and operating conditions in a comparative study was also performed. The pre-treatment unit’s biodelipidation abilities were characterised by a mean FOG removal of 80% and the TSS and COD removal reached 38 and 56%, respectively. The final acquired removal results on the DEGBR, at an OLR of ~18–45 g COD/L.d, was 87, 93, and 90% for COD, TSS, and FOG, respectively. The total removal efficiency across the pre-treatment-DEGBR-MBR units was 99% for COD, TSS, and FOG. Even at a high OLR, the pre-treatment-DEGBR-MBR train seemed a robust treatment strategy and achieved the effluent quality set requirements for effluent discharge in most countries.
The treatment of poultry slaughterhouse wastewater (PSW) with an Expanded Granular Sludge-Bed Bioreactor (EGSB) is hindered by the washout of activated sludge, and difficulties associated with the operation of the three-phase separator and the determination of the optimum up-flow velocity for sludge-bed fluidization. This results in a poor reactor functionality, and thus a poor performance due to pollutants such as fats, oil and grease (FOG) in the PSW being treated. Hydrolyzing the FOG content with a bio-delipidation, enzyme-based agent in a pre-treatment unit would significantly improve the effectiveness of the primary PSW treating system, i.e., the EGSB. In this study, PSW was pre-treated for 48 h with a biological mixture containing bioflocculants and bio-delipidation constituents. The pre-treated PSW was further treated in an EGSB. The PSW FOG, total chemical oxygen demand (tCOD) and total suspended solids (TSS) content were determined to assess the effectiveness of the pre-treatment process as well as to observe the remedial action of the combined pre-treatment-EGSB system. An increased treatment efficacy was noted for the combined PSW treatment system, whereby the tCOD, FOG and TSS removal averaged 76%, 88% and 87%, respectively. The process developed is intended for micro, small and medium poultry slaughterhouses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.