Organophosphorus nerve agents (OPNAs) are irreversible inhibitors of acetylcholinesterase that pose a serious threat to public health because of their use as chemical weapons. Exposure to high doses of OPNAs can dramatically potentiate cholinergic synaptic activity and cause status epilepticus (SE). Current standard of care for OPNA exposure involves treatment with cholinergic antagonists, oxime cholinesterase reactivators, and benzodiazepines. However, data from pre-clinical models suggest that OPNA-induced SE rapidly becomes refractory to benzodiazepines. Neuroactive steroids (NAS), such as allopregnanolone, retain anticonvulsant activity in rodent models of benzodiazepine-resistant SE, perhaps because they modulate a broader variety of GABA receptor subtypes. SGE-516 is a novel, next generation NAS and a potent and selective GABA receptor positive allosteric modulator (PAM). The present study first established that SGE-516 reduced electrographic seizures in the rat lithium-pilocarpine model of pharmacoresistant SE. Then the anticonvulsant activity of SGE-516 was investigated in the soman-intoxication model of OPNA-induced SE. SGE-516 (5.6, 7.5, and 10mg/kg, IP) significantly reduced electrographic seizure activity compared to control when administered 20min after SE onset. When 10mg/kg SGE-516 was administered 40min after SE onset, seizure activity was still significantly reduced compared to control. In addition, all cohorts of rats treated with SGE-516 exhibited significantly reduced neuronal cell death as measured by FluoroJade B immunohistochemistry. These data suggest synthetic NASs that positively modulate both synaptic and extrasynaptic GABA receptors may be candidates for further study in the treatment of OPNA-induced SE.
Introduction: Organophosphorus nerve agents (OPNAs) irreversibly block acetylcholinesterase activity, resulting in accumulation of excess acetylcholine at neural synapses, which can lead to a state of prolonged seizures known as status epilepticus (SE). Benzodiazepines, the current standard of care for SE, become less effective as latency to treatment increases. In a mass civilian OPNA exposure, concurrent trauma and limited resources would likely cause a delay in first response time. To address this issue, we have developed a rat model to test novel anticonvulsant/ neuroprotectant adjuncts at delayed time points. Methods: For model development, adult male rats with cortical electroencephalographic (EEG) electrodes were exposed to soman and administered saline along with atropine, 2-PAM, and midazolam 5, 20, or 40 minutes after SE onset. We validated our model using three drugs: scopolamine, memantine, and phenobarbital. Using the same procedure outlined above, rats were given atropine, 2-PAM, midazolam and test treatment 20 minutes after SE onset. Results: Using gamma power, delta power, and spike rate to quantify EEG activity, we found that scopolamine was effective, memantine was minimally effective, and phenobarbital had a delayed effect on terminating SE. Fluoro-Jade B staining was used to assess neuroprotection in *
Nerve agents are highly toxic chemicals that pose an imminent threat to soldiers and civilians alike. Nerve agent exposure leads to an increase in acetylcholine within the central nervous system, resulting in development of protracted seizures known as status epilepticus (SE). Currently, benzodiazepines are the standard of care for nerve agent-induced SE, but their efficacy quickly wanes as the time to treatment increases. Here, we examine the role of the α2-adrenoceptor in termination of nerve agent-induced SE using the highly specific agonist dexmedetomidine (DEX). Adult male rats were exposed to soman and entered SE as confirmed by electroencephalograph (EEG). We observed that administration of DEX in combination with the benzodiazepine midazolam (MDZ) 20 or 40 min after the onset of SE stopped seizures and returned processed EEG measurements to baseline levels. The protective effect of DEX was blocked by the α2-adrenoceptor antagonist atipamezole (ATI), but ATI failed to restore seizure activity after it was already halted by DEX in most cases, suggesting that α2-adrenoceptors may be involved in initiating SE cessation rather than merely suppressing seizure activity. Histologically, treatment with DEX + MDZ significantly reduced the number of dying neurons as measured by FluoroJade B in the amygdala, thalamus, and piriform cortex, but did not protect the hippocampus or parietal cortex even when SE was successfully halted. We conclude that DEX serves not just as a valuable potential addition to the anticonvulsant regimen for nerve agent exposure, but also as a tool for dissecting the neural circuitry that drives SE.
Nerve agents (NAs) induce a severe cholinergic crisis that can lead to status epilepticus (SE). Current guidelines for treatment of NA-induced SE only include prehospital benzodiazepines, which may not fully resolve this life-threatening condition. This study examined the efficacy of general clinical protocols for treatment of SE in the specific context of NA poisoning in adult male rats. Treatment with both intramuscular and intravenous benzodiazepines was entirely insufficient to control SE. Second line intervention with valproate (VPA) initially terminated SE in 35% of rats, but seizures always returned. Phenobarbital (PHB) was more effective, with SE terminating in 56% of rats and 19% of rats remaining seizure-free for at least 24 h. The majority of rats demonstrated refractory SE (RSE) and required treatment with a continuous third-line anesthetic. Both ketamine (KET) and propofol (PRO) led to high levels of mortality, and nearly all rats on these therapies had breakthrough seizure activity, demonstrating super-refractory SE (SRSE). For the small subset of rats in which SE was fully resolved, significant improvements over controls were observed in recovery metrics, behavioral assays, and brain pathology. Together these data suggest that NA-induced SE is particularly severe, but aggressive treatment in the intensive care setting can lead to positive functional outcomes for casualties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.